I had a similar problem, but instead of using data.table
or tidyverse
I created my own function amerge
for "approximate merge". It takes 4 arguments:
- two data frames,
- a vector of column names for "firm" (not approximate) merge - these must exist in both data frames,
- and the name of a single column (in both data frames) for approximate merge. It will work for any numeric values, including dates.
The idea was to merge rows 1-to-1 of best matches, and not loose any rows from any data frame. Here is my commented code with a working example.
amerge <- function(d1, d2, firm=NULL, approx=NULL) {
rt = Sys.time()
# Take care of conflicting column names
n2 = data.frame(oldname = names(d2), newname = names(d2))
n2$newname = as.character(n2$newname)
n2$newname[(n2$oldname %in% names(d1)) & !(n2$oldname %in% firm)] =
paste(n2$newname[(n2$oldname %in% names(d1)) & !(n2$oldname %in% firm)], "2", sep=".")
# Add unique row IDs
if (length(c(firm, approx))>1) {
d1$ID1 = factor(apply(d1[,c(approx,firm)], 1, paste, collapse=" "))
d2$ID2 = factor(apply(d2[,c(approx,firm)], 1, paste, collapse=" "))
} else {
d1$ID1 = factor(d1[,c(approx,firm)])
d2$ID2 = factor(d2[,c(approx,firm)])
}
# Perform initial merge on the 'firm' parameters, if any
# Otherwise match all to all
if (length(firm)>0) {
t1 = merge(d1, d2, by=firm, all=T, suff=c("",".2"))
} else {
names(d2)= c(n2$newname,"ID2")
t1 = data.frame()
for (i1 in 1:nrow(d1)) {
trow = d1[i1,]
t1 = rbind(t1, cbind(trow, d2))
}
}
# Match by the most approximate record
if (length(approx)==1) {
# Calculate the differential for approximate merging
t1$DIFF = abs(t1[,approx] - t1[,n2$newname[n2$oldname==approx]])
# Sort data by ascending DIFF, so that best matching records are used first
t1 = t1[order(t1$DIFF, t1$ID1, t1$ID2),]
t2 = data.frame()
d2$used = 0
# For each record of d1, find match from d2
for (i1 in na.omit(unique(t1$ID1))) {
tx = t1[!is.na(t1$DIFF) & t1$ID1==i1,]
# If there are non-missing records, get the one with minimum DIFF (top one)
if (nrow(tx)>0) {
tx = tx[1,]
# If matching record found, remove it from the pool, so it's not used again
t1[!is.na(t1$ID2) & t1$ID2==tx$ID2, c(n2$newname[!(n2$newname %in% firm)], "DIFF")] = NA
# And mark it as used
d2$used[d2$ID2==tx$ID2] = 1
} else {
# If there are no non-missing records, just get the first one from the top
tx = t1[!is.na(t1$ID1) & t1$ID1==i1,][1,]
}
t2 = rbind(t2,tx)
}
} else {
t2 = t1
}
# Make the records the same order as d1
t2 = t2[match(d1$ID1, t2$ID1),]
# Add unmatched records from d2 to the end of output
if (any(d2$used==0)) {
tx = t1[t1$ID2 %in% d2$ID2[d2$used==0], ]
tx = tx[!duplicated(tx$ID2),]
tx[, names(d1)[!(names(d1) %in% c(firm))]] = NA
t2 = rbind(t2,tx)
t2[is.na(t2[,approx]), approx] = t2[is.na(t2[,approx]), n2$newname[n2$oldname==approx]]
}
t2$DIFF = t2$ID1 = t2$ID2 = NULL
cat("* Run time: ", round(difftime(Sys.time(),rt, "secs"),1), " seconds.\n", sep="")
return(t2)
}
And the example:
new <- data.frame(ID=c(1,1,1,2), date = as.POSIXct( c("2016-03-02 12:20:00", "2016-03-07 12:20:00", "2016-04-02 12:20:00", "2016-04-12 11:03:00")), new = c("t","u","v","x"))
old <- data.frame(ID=c(1,1,1,1,1), date = as.POSIXct( c("2016-03-07 12:20:00", "2016-04-02 12:20:00", "2016-03-01 10:09:00", "2015-04-12 10:09:00","2016-03-03 12:20:00")), old = c("a","b","c","d","e"))
amerge(old, new, firm="ID", approx="date")
It outputs:
ID date old date.2 new
2 1 2016-03-07 12:20:00 a 2016-03-07 12:20:00 u
6 1 2016-04-02 12:20:00 b 2016-04-02 12:20:00 v
7 1 2016-03-01 10:09:00 c <NA> <NA>
10 1 2015-04-12 10:09:00 d <NA> <NA>
13 1 2016-03-03 12:20:00 e 2016-03-02 12:20:00 t
16 2 2016-04-12 11:03:00 <NA> 2016-04-12 11:03:00 x
So works for my purpose as intended - there is exactly one copy of each row from both data frames - matched by shortest time difference. One note: the function copies date.2
into date
column where the date
would be missing.