I have two different data frames with different sizes just like this:
df_web = (['Event Category', 'ID', 'Total Events',
'Unique Events', 'Event Value', 'Avg. Value'])
df_app = (['Event Category', 'ID', 'Total Events',
'Unique Events', 'Event Value', 'Avg. Value']
I'm using pandas to try to merge them in a 'df_final', but I want to sum the values of 'Total Events' which have the same 'ID' , and in the end I would like to have a 'df_final' without duplicates in the ID.
I tried:
df_final_analysis = df_web.groupby(['Event Category', 'ID', 'Total Events',
'Unique Events', 'Event Value', 'Avg. Value'],
as_index=False)['Total Events'].sum()
But it doesnt give me the result that I want.
For example:
df_web
Video A 10
Video B 5
Video C 1
Video F 1
Video G 1
Video H 1
For df_app:
Video A 15
Video D 3
Video C 1
For the df_final_analysis I want:
Video A 25
Video B 5
Video D 3
Video C 2
Video F 1
Video G 1
Video H 1
Is there a elegant way to do this?