This is how I solved the above problem.
Though prediction accuracy is not bad ,the model has to be tuned further
for better results.
Experts , please revert back if you find anything wrong.
My input data frame has two columns "Text" and "RiskClassification"
Below are the sequence of steps to predict using Naive Bayes in Java
- Add a new column "label" to the input dataframe . This column will basically decode the risk classification like below
sqlContext.udf().register("myUDF", new UDF1<String, Integer>() {
@Override
public Integer call(String input) throws Exception {
if ("LOW".equals(input))
return 1;
if ("MEDIUM".equals(input))
return 2;
if ("HIGH".equals(input))
return 3;
return 0;
}
}, DataTypes.IntegerType);
samplingData = samplingData.withColumn("label", functions.callUDF("myUDF", samplingData.col("riskClassification")));
- Create the Training ( 80 % ) and Testing Data Sets ( 20 % )
For eg :
DataFrame lowRisk = samplingData.filter(samplingData.col("label").equalTo(1));
DataFrame lowRiskTraining = lowRisk.sample(false, 0.8);
Union All the dataframes to build the complete training data
Building test data is slightly tricky . Test Data should have all data which
is not present in the training data
Start transformation of training data and build the model
6 . Tokenize the text column in the training data set
Tokenizer tokenizer = new Tokenizer().setInputCol("text").setOutputCol("words");
DataFrame tokenized = tokenizer.transform(trainingRiskData);
- Remove Stop Words. (Here you can also do advanced operations like lemme, stemmer, POS etc using Stanford NLP library)
StopWordsRemover remover = new StopWordsRemover().setInputCol("words").setOutputCol("filtered");
DataFrame stopWordsRemoved = remover.transform(tokenized);
- Compute Term Frequency using HashingTF. CountVectorizer is another way to do this
int numFeatures = 20;
HashingTF hashingTF = new HashingTF().setInputCol("filtered").setOutputCol("rawFeatures")
.setNumFeatures(numFeatures);
DataFrame rawFeaturizedData = hashingTF.transform(stopWordsRemoved);
IDF idf = new IDF().setInputCol("rawFeatures").setOutputCol("features");
IDFModel idfModel = idf.fit(rawFeaturizedData);
DataFrame featurizedData = idfModel.transform(rawFeaturizedData);
- Convert the featurized input into JavaRDD . Naive Bayes works on LabeledPoint
JavaRDD<LabeledPoint> labelledJavaRDD = featurizedData.select("label", "features").toJavaRDD()
.map(new Function<Row, LabeledPoint>() {
@Override
public LabeledPoint call(Row arg0) throws Exception {
LabeledPoint labeledPoint = new LabeledPoint(new Double(arg0.get(0).toString()),
(org.apache.spark.mllib.linalg.Vector) arg0.get(1));
return labeledPoint;
}
});
- Build the model
NaiveBayes naiveBayes = new NaiveBayes(1.0, "multinomial");
NaiveBayesModel naiveBayesModel = naiveBayes.train(labelledJavaRDD.rdd(), 1.0);
Run all the above transformations on the test data also
Loop through the test data frame and perform the below actions
Create a LabeledPoint using the "label" and "features" in the test data frame
For eg : If the test data frame has label and features in the third and seventh column , then
LabeledPoint labeledPoint = new LabeledPoint(new Double(dataFrameRow.get(3).toString()),
(org.apache.spark.mllib.linalg.Vector) dataFrameRow.get(7));
- Use the Prediction Model to predict the label
double predictedLabel = naiveBayesModel.predict(labeledPoint.features());
Add the predicted label also as a column to the test data frame.
Now test data frame has the expected label and the predicted label.
You can export the test data to csv and do analysis or you can compute the accuracy programatically as well.