3

Is it pythonic to use sum() for list concatenation?

>>> sum(([n]*n for n in range(1,5)),[])
[1, 2, 2, 3, 3, 3, 4, 4, 4, 4]
Mazdak
  • 105,000
  • 18
  • 159
  • 188
VPfB
  • 14,927
  • 6
  • 41
  • 75

2 Answers2

7

No it's not, Actually it's shlemiel the painter algorithm. Because each time it wants to concatenate a new list it has to traverse the whole list from beginning. (For more info read this article by Joel: http://www.joelonsoftware.com/articles/fog0000000319.html)

The most pythonic way is using a list comprehension:

In [28]: [t for n in range(1,5) for t in [n]*n ]
Out[28]: [1, 2, 2, 3, 3, 3, 4, 4, 4, 4]

Or itertools.chain:

In [29]: from itertools import chain

In [32]: list(chain.from_iterable([n]*n for n in range(1,5)))
Out[32]: [1, 2, 2, 3, 3, 3, 4, 4, 4, 4]

Or as a pure generator based approach you can use repeat instead of multiplying the list:

In [33]: from itertools import chain, repeat

# In python2.X use xrange instead of range
In [35]: list(chain.from_iterable(repeat(n, n) for n in range(1,5)))
Out[35]: [1, 2, 2, 3, 3, 3, 4, 4, 4, 4]

Or if you are interested in numpy, or you want a super fast approach here is one:

In [46]: import numpy as np
In [46]: np.repeat(np.arange(1, 5), np.arange(1, 5))
Out[46]: array([1, 2, 2, 3, 3, 3, 4, 4, 4, 4])
Mazdak
  • 105,000
  • 18
  • 159
  • 188
3

No, this will get very slow for large lists. List comprehensions are a far better option.

Code for timing list flattening via list comprehensions, summation and itertools.chain.from_iterable:

import time
from itertools import chain

def increasing_count_lists(upper):
    yield from ([n]*n for n in range(1,upper))

def printtime(func):
    def clocked_func(*args):
        t0 = time.perf_counter()
        result = func(*args)
        elapsed_s = time.perf_counter() - t0
        print('{:.4}ms'.format(elapsed_s*1000))
        return result
    return clocked_func

@printtime
def concat_list_sum(upper):
    return sum(increasing_count_lists(upper), [])

@printtime
def concat_list_listcomp(upper):
    return [item for sublist in increasing_count_lists(upper) for item in sublist]

@printtime
def concat_list_chain(upper):
    return list(chain.from_iterable(increasing_count_lists(upper)))

And running them:

>>> _ = concat_list_sum(5)
0.03351ms
>>> _ = concat_list_listcomp(5)
0.03034ms
>>> _ = concat_list_chain(5)
0.02717ms
>>> _ = concat_list_sum(50)
0.2373ms
>>> _ = concat_list_listcomp(50)
0.2169ms
>>> _ = concat_list_chain(50)
0.1467ms
>>> _ = concat_list_sum(500)
167.6ms
>>> _ = concat_list_listcomp(500)
8.319ms
>>> _ = concat_list_chain(500)
12.02ms
David Scarlett
  • 3,171
  • 2
  • 12
  • 28