You can use:
#convert time and date to datetime
df['date_start'] = pd.to_datetime(df.start + ' ' + df.date)
df['date_end'] = pd.to_datetime(df.end + ' ' + df.date)
#remove columns
df = df.drop(['start','end','date'], axis=1)
Solution with loop:
active_events= []
for i in df.index:
active_events.append(len(df[(df["date_start"]<=df.loc[i,"date_start"]) &
(df["date_end"]> df.loc[i,"date_start"])]))
df['activecalls'] = pd.Series(active_events)
print (df)
date_start date_end activecalls
0 2016-08-10 09:17:12 2016-08-10 09:18:20 1
1 2016-08-11 09:15:58 2016-08-11 09:17:42 1
2 2016-08-11 09:16:40 2016-08-11 09:17:49 2
3 2016-08-11 09:17:05 2016-08-11 09:18:03 3
4 2016-08-11 09:18:22 2016-08-11 09:18:30 1
Solution with merge
#cross join
df['tmp'] = 1
df1 = pd.merge(df,df.reset_index(),on=['tmp'])
df = df.drop('tmp', axis=1)
#print (df1)
#filtering by conditions
df1 = df1[(df1["date_start_x"]<=df1["date_start_y"])
(df1["date_end_x"]> df1["date_start_y"])]
print (df1)
date_start_x date_end_x activecalls_x tmp index \
0 2016-08-10 09:17:12 2016-08-10 09:18:20 1 1 0
6 2016-08-11 09:15:58 2016-08-11 09:17:42 1 1 1
7 2016-08-11 09:15:58 2016-08-11 09:17:42 1 1 2
8 2016-08-11 09:15:58 2016-08-11 09:17:42 1 1 3
12 2016-08-11 09:16:40 2016-08-11 09:17:49 2 1 2
13 2016-08-11 09:16:40 2016-08-11 09:17:49 2 1 3
18 2016-08-11 09:17:05 2016-08-11 09:18:03 3 1 3
24 2016-08-11 09:18:22 2016-08-11 09:18:30 1 1 4
date_start_y date_end_y activecalls_y
0 2016-08-10 09:17:12 2016-08-10 09:18:20 1
6 2016-08-11 09:15:58 2016-08-11 09:17:42 1
7 2016-08-11 09:16:40 2016-08-11 09:17:49 2
8 2016-08-11 09:17:05 2016-08-11 09:18:03 3
12 2016-08-11 09:16:40 2016-08-11 09:17:49 2
13 2016-08-11 09:17:05 2016-08-11 09:18:03 3
18 2016-08-11 09:17:05 2016-08-11 09:18:03 3
24 2016-08-11 09:18:22 2016-08-11 09:18:30 1
#get size - active calls
print (df1.groupby(['index'], sort=False).size())
index
0 1
1 1
2 2
3 3
4 1
dtype: int64
df['activecalls'] = df1.groupby('index').size()
print (df)
date_start date_end activecalls
0 2016-08-10 09:17:12 2016-08-10 09:18:20 1
1 2016-08-11 09:15:58 2016-08-11 09:17:42 1
2 2016-08-11 09:16:40 2016-08-11 09:17:49 2
3 2016-08-11 09:17:05 2016-08-11 09:18:03 3
4 2016-08-11 09:18:22 2016-08-11 09:18:30 1
Timings:
def a(df):
active_events= []
for i in df.index:
active_events.append(len(df[(df["date_start"]<=df.loc[i,"date_start"]) & (df["date_end"]> df.loc[i,"date_start"])]))
df['activecalls'] = pd.Series(active_events)
return (df)
def b(df):
df['tmp'] = 1
df1 = pd.merge(df,df.reset_index(),on=['tmp'])
df = df.drop('tmp', axis=1)
df1 = df1[(df1["date_start_x"]<=df1["date_start_y"]) & (df1["date_end_x"]> df1["date_start_y"])]
df['activecalls'] = df1.groupby('index').size()
return (df)
print (a(df))
print (b(df))
In [160]: %timeit (a(df))
100 loops, best of 3: 6.76 ms per loop
In [161]: %timeit (b(df))
The slowest run took 4.42 times longer than the fastest. This could mean that an intermediate result is being cached.
100 loops, best of 3: 4.61 ms per loop