I've been working with NLTK and Database Classification. I'm having a problem with stop word removal. When I print the list of stop words all of the words are listed with "u'" before them. For example: [u'all', u'just', u'being', u'over', u'both', u'through'] I'm not sure if this is normal or part of the issue.
When I print (1_feats) I get a list of words, with some of them being the stopwords listed in the corpus.
import os
from nltk.classify import NaiveBayesClassifier
from nltk.corpus import stopwords
stopset = list(set(stopwords.words('english')))
morewords = 'delivery', 'shipment', 'only', 'copy', 'attach', 'material'
stopset.append(morewords)
def word_feats(words):
return dict([(word, True) for word in words.split() if word not in stopset])
ids_1 = {}
ids_2 = {}
ids_3 = {}
ids_4 = {}
ids_5 = {}
ids_6 = {}
ids_7 = {}
ids_8 = {}
ids_9 = {}
path1 = "/Users/myname/Documents/Data Classifier Files/1/"
for name in os.listdir(path1):
if name[-4:] == '.txt':
f = open(path1 + "/" + name, "r")
ids_1[name] = f.read()
f.close()
path2 = "/Users/myname/Documents/Data Classifier Files/2/"
for name in os.listdir(path2):
if name[-4:] == '.txt':
f = open(path2 + "/" + name, "r")
ids_2[name] = f.read()
f.close()
path3 = "/Users/myname/Documents/Data Classifier Files/3/"
for name in os.listdir(path3):
if name[-4:] == '.txt':
f = open(path3 + "/" + name, "r")
ids_3[name] = f.read()
f.close()
path4 = "/Users/myname/Documents/Data Classifier Files/4/"
for name in os.listdir(path4):
if name[-4:] == '.txt':
f = open(path4 + "/" + name, "r")
ids_4[name] = f.read()
f.close()
path5 = "/Users/myname/Documents/Data Classifier Files/5/"
for name in os.listdir(path5):
if name[-4:] == '.txt':
f = open(path5 + "/" + name, "r")
ids_5[name] = f.read()
f.close()
path6 = "/Users/myname/Documents/Data Classifier Files/6/"
for name in os.listdir(path6):
if name[-4:] == '.txt':
f = open(path6 + "/" + name, "r")
ids_6[name] = f.read()
f.close()
path7 = "/Users/myname/Documents/Data Classifier Files/7/"
for name in os.listdir(path7):
if name[-4:] == '.txt':
f = open(path7 + "/" + name, "r")
ids_7[name] = f.read()
f.close()
path8 = "/Users/myname/Documents/Data Classifier Files/8/"
for name in os.listdir(path8):
if name[-4:] == '.txt':
f = open(path8 + "/" + name, "r")
ids_8[name] = f.read()
f.close()
path9 = "/Users/myname/Documents/Data Classifier Files/9/"
for name in os.listdir(path9):
if name[-4:] == '.txt':
f = open(path9 + "/" + name, "r")
ids_9[name] = f.read()
f.close()
feats_1 = [(word_feats(ids_1[f]), '1') for f in ids_1 ]
feats_2 = [(word_feats(ids_2[f]), "2") for f in ids_2 ]
feats_3 = [(word_feats(ids_3[f]), '3') for f in ids_3 ]
feats_4 = [(word_feats(ids_4[f]), '4') for f in ids_4 ]
feats_5 = [(word_feats(ids_5[f]), '5') for f in ids_5 ]
feats_6 = [(word_feats(ids_6[f]), '6') for f in ids_6 ]
feats_7 = [(word_feats(ids_7[f]), '7') for f in ids_7 ]
feats_8 = [(word_feats(ids_8[f]), '8') for f in ids_8 ]
feats_9 = [(word_feats(ids_9[f]), '9') for f in ids_9 ]
trainfeats = feats_1 + feats_2 + feats_3 + feats_4 + feats_5 + feats_6 + feats_7 + feats_8 + feats_9
classifier = NaiveBayesClassifier.train(trainfeats)