I want to know, how the standard error values calculate from the logistic regression in R manually.
I took a sample data and i applied binomial logistic regression on it
data = data.frame(x = c(1,2,3,4,5,6,7,8,9,10),y = c(0,0,0,1,1,1,0,1,1,1))
model = glm(y ~ x, data = data, family = binomial(link = "logit"))
And my summary of the model is as follows and i have no idea, how the standard error has been calculated
> summary(model)
Call:
glm(formula = y ~ x, family = binomial(link = "logit"), data = data)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.9367 -0.5656 0.2641 0.6875 1.2974
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.9265 2.0601 -1.421 0.1554
x 0.6622 0.4001 1.655 0.0979 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 13.4602 on 9 degrees of freedom
Residual deviance: 8.6202 on 8 degrees of freedom
AIC: 12.62
Number of Fisher Scoring iterations: 5
That would be great, if some one will answer to this... thanks in advance