In linux 64bit environment, I have very big float64 array (single one will be 500GB to 1TB). I would like to access these arrays in numpy with uniform way: a[x:y]. So I do not want to access the array as segments file by file. Is there any tools that I can create memmap over many different files? Can hdf5 or pytables store a single CArray into many small files? Maybe something similar to the fileInput? Or Can I do something with the file system to simulate a single file?
In matlab I've been using H5P.set_external to do this. Then I can create a raw dataset and access it as a big raw file. But I do not know if I can create numpy.ndarray over these dataset in python. Or can I spread a single dataset over many small hdf5 files?
and unfortunately the H5P.set_chunk does not work with H5P.set_external, because set_external only work with continuous data type not chunked data type.
some related topics: Chain datasets from multiple HDF5 files/datasets