Requirement :
One particular column in a DataFrame is 'Mixed' Type. It can have values like "123456"
or "ABC12345"
.
This dataframe is being written into an Excel using xlsxwriter .
For values like "123456"
, down the line Pandas converting it into 123456.0
( Making it look like a float)
We need to put it into xlsx as 123456 (i.e as +integer) in case value is FULLY numeric.
Effort :
Code Snippet shown below
import pandas as pd
import numpy as np
import xlsxwriter
import os
import datetime
import sys
excel_name = str(input("Please Enter Spreadsheet Name :\n").strip())
print("excel entered : " , excel_name)
df_header = ['DisplayName','StoreLanguage','Territory','WorkType','EntryType','TitleInternalAlias',
'TitleDisplayUnlimited','LocalizationType','LicenseType','LicenseRightsDescription',
'FormatProfile','Start','End','PriceType','PriceValue','SRP','Description',
'OtherTerms','OtherInstructions','ContentID','ProductID','EncodeID','AvailID',
'Metadata', 'AltID', 'SuppressionLiftDate','SpecialPreOrderFulfillDate','ReleaseYear','ReleaseHistoryOriginal','ReleaseHistoryPhysicalHV',
'ExceptionFlag','RatingSystem','RatingValue','RatingReason','RentalDuration','WatchDuration','CaptionIncluded','CaptionExemption','Any','ContractID',
'ServiceProvider','TotalRunTime','HoldbackLanguage','HoldbackExclusionLanguage']
first_pass_drop_duplicate = df_m_d.drop_duplicates(['StoreLanguage','Territory','TitleInternalAlias','LocalizationType','LicenseType',
'LicenseRightsDescription','FormatProfile','Start','End','PriceType','PriceValue','ContentID','ProductID',
'AltID','ReleaseHistoryPhysicalHV','RatingSystem','RatingValue','CaptionIncluded'], keep=False)
# We need to keep integer AltID as is
first_pass_drop_duplicate.loc[first_pass_drop_duplicate['AltID']] = first_pass_drop_duplicate['AltID'].apply(lambda x : str(int(x)) if str(x).isdigit() == True else x)
I have tried :
1. using `dataframe.astype(int).astype(str)` # works as long as value is not alphanumeric
2.importing re and using pure python `re.compile()` and `replace()` -- does not work
3.reading DF row by row in a for loop !!! Kills the machine as dataframe can have 300k+ records
Each time, error I get:
raise KeyError('%s not in index' % objarr[mask])
KeyError: '[ 102711. 102711. 102711. 102711. 102711. 102711. 102711. 102711.\n 102711. 102711. 102711. 102711. 102711. 102711. 102711. 102711.\n 102711. 102711. 102711. 102711. 102711. 102711. 102711. 102711.\n 102711. 102711. 102711. 102711. 102711. 102711. 102711. 102711.\n 102711. 102711. 102711. 102711. 102711. 102711. 102711. 102711.\n 102711. 102711. 102711. 102711. 102711. 102711. 102711. 102711.\n 102711. 102711. 102711. 102711. 102711. 102711. 102711. 102711.\n 102711. 102711. 102711. 102711. 102711. 102711. 102711. 102711.\n 5337. 5337. 5337. 5337. 5337. 5337. 5337. 5337.\n 5337. 5337. 5337. 5337. 5337. 5337. 5337. 5337.\n 5337. 5337. 5337. 5337. 5337. 5337. 5337. 5337.\n 5337. 5337. 5337. 5337. 5337. 5337. 5337. 5337.\n 5337. 5337. 5337. 5337. 5337. 5337. 5337. 5337.\n 5337. 5337. 2124. 2124. 2124. 2124. 2124. 2124.\n 2124. 2124. 6643. 6643. 6643. 6643. 6643. 6643.\n 6643. 6643. 6643. 6643. 6643. 6643. 6643. 6643.\n 6643. 6643. 6643. 6643. 6643. 6643. 6643. 6643.\n 6643. 6643. 6643. 6643. 6643. 6643. 6643. 6643.] not in index'
I am newbie in python/pandas , any help, solution is much appreciated.