I need your help with converting a multidimensional dict to a pandas data frame. I get the dict from a JSON file which I retrieve from a API call (Shopify).
response = requests.get("URL", auth=("ID","KEY"))
data = json.loads(response.text)
The "data" dictionary looks as follows:
{'orders': [{'created_at': '2016-09-20T22:04:49+02:00',
'email': 'test@aol.com',
'id': 4314127108,
'line_items': [{'destination_location':
{'address1': 'Teststreet 12',
'address2': '',
'city': 'Berlin',
'country_code': 'DE',
'id': 2383331012,
'name': 'Test Test',
'zip': '10117'},
'gift_card': False,
'name': 'Blueberry Cup'},
{'destination_location':
{'address1': 'Teststreet 12',
'address2': '',
'city': 'Berlin',
'country_code': 'DE',
'id': 2383331012,
'name': 'Test Test',
'zip': '10117'},
'gift_card': False,
'name': 'Strawberry Cup'}]
}]}
In this case the dictionary has 4 Dimensions and I would like to convert the dict into a pandas data frame. I tried everything ranging from json_normalize() to pandas.DataFrame.from_dict(), yet I did not manage to get anywhere. When I try to convert the dict to a df, I get columns which contain list of lists.
My goal is to have an individual row per product. Thanks!
Desired Output:
Created at Email id Name
9/20/2016 test@test.de 4314127108 Blueberry Cup
9/20/2016 test@test.de 4314127108 Strawberry Cup