I want to perform a multilabel image classification task for n classes. I've got sparse label vectors for each image and each dimension of each label vector is currently encoded in this way:
1.0 ->Label true / Image belongs to this class
-1.0 ->Label false / Image does not contain to this class.
0.0 ->missing value/label
E.g.: V= {1.0,-1.0,1.0, 0.0}
For this example V the model should learn, that the corresponding image should be classified in the first and third class.
My problem is currently how to handle the missing values/labels. I've searched through the issues and found this issue: tensorflow/skflow#113 found here
So could do multilable image classification with: tf.nn.sigmoid_cross_entropy_with_logits(logits, targets, name=None)
but TensorFlow has this error function for sparse softmax, which is used for exclusive classification: tf.nn.sparse_softmax_cross_entropy_with_logits(logits, labels, name=None)
So is there something like sparse sigmoid cross entropy? (Couldn't find something) or any suggestions how can I handle my multilabel classification problem with sparse labels.