It is well-known that Flash memory has limited write endurance, less so that reads could also have an upper limit such as mentioned in this Flash endurance test's Conclusion (3rd point).
On a microcontroller the code is typically stored in Flash, and is executed by fetching code words directly from the Flash cells.
(at least this is most commonly so on 8 bit micros, some 32 bit micros might have some small buffer).
Depending on the particular code, it might happen that a location is accessed extremely frequently, such as if on the main execution path there is some busy loop, such as a wait for an interrupt
(for example from a timer, synchronizing execution to a fixed interval).
This could generate 100K or even more (read) accesses per second on average to a single Flash cell (depending on clock and the particular code).
Could such code actually destroy the cells of the Flash underneath it?
(Is there any necessity to be concerned about this particular problem when designing code for microcontrollers? Such as part of a system which is meant to operate for years? Of course the Flash could be periodically verified by CRC, but that doesn't prevent the system failing if it happens, only that the failure will more likely happen in a controlled manner)