The bad news
The request can't be satisfied. There are values of A
and B
for which there is NO value of t
other than 0 and 1 for which lerp(A, B, t)
is a float.
A trivial example in single precision is x1 = 12345678.f
and x2 = 12345679.f
. Regardless of the values of y1
and y2
, the required result must have an x
component between 12345678.f
and 12345679.f
, and there's no single-precision float between these two.
The (sorta) good news
The exact interpolated value, however, can be represented as the sum of 5 floating-point values (vectors in the case of 2D): one for the formula's result, one for the error in each operation [1] and one for multiplying the error by t
. I'm not sure if that will be useful to you. Here's a 1D C version of the algorithm in single precision that uses fused multiply-add to calculate the product error, for simplicity:
#include <math.h>
float exact_sum(float a, float b, float *err)
{
float sum = a + b;
float z = sum - a;
*err = a - (sum - z) + (b - z);
return sum;
}
float exact_mul(float a, float b, float *err)
{
float prod = a * b;
*err = fmaf(a, b, -prod);
return prod;
}
float exact_lerp(float A, float B, float t,
float *err1, float *err2, float *err3, float *err4)
{
float diff = exact_sum(B, -A, err1);
float prod = exact_mul(diff, t, err2);
*err1 = exact_mul(*err1, t, err4);
return exact_sum(A, prod, err3);
}
In order for this algorithm to work, operations need to conform to IEEE-754 semantics in round-to-nearest mode. That's not guaranteed by the C standard, but the GNU gcc compiler can be instructed to do so, at least in processors supporting SSE2 [2][3].
It is guaranteed that the arithmetic addition of (result + err1 + err2 + err3 + err4)
will be equal to the desired result; however, there is no guarantee that the floating-point addition of these quantities will be exact.
To use the above example, exact_lerp(12345678.f, 12345679.f, 0.300000011920928955078125f, &err1, &err2, &err3, &err4)
returns a result of 12345678.f
and err1
, err2
, err3
and err4
are 0.0f
, 0.0f
, 0.300000011920928955078125f
and 0.0f
respectively. Indeed, the correct result is 12345678.300000011920928955078125 which can't be represented as a single-precision float.
A more convoluted example: exact_lerp(0.23456789553165435791015625f, 7.345678806304931640625f, 0.300000011920928955078125f, &err1, &err2, &err3, &err4)
returns 2.3679010868072509765625f
and the errors are 6.7055225372314453125e-08f
, 8.4771045294473879039287567138671875e-08f
, 1.490116119384765625e-08f
and 2.66453525910037569701671600341796875e-15f
. These numbers add up to the exact result, which is 2.36790125353468550173374751466326415538787841796875 and can't be exactly stored in a single-precision float.
All numbers in the examples above are written using their exact values, rather than a number that approximates to them. For example, 0.3 can't be represented exactly as a single-precision float; the closest one has an exact value of 0.300000011920928955078125 which is the one I've used.
It might be possible that if you calculate err1 + err2 + err3 + err4 + result
(in that order), you get an approximation that is considered collinear in your use case. Perhaps worth a try.
References