The best definition of fuzzy logic is given by its inventor Lotfi Zadeh:
“Fuzzy logic means of representing problems to computers in a way akin to the way human solve them and the essence of fuzzy logic is that everything is a matter of degree.”
The meaning of solving problems with computers akin to the way human solve can easily be explained with a simple example from a basketball game; if a player wants to guard another player firstly he should consider how tall he is and how his playing skills are. Simply if the player that he wants to guard is tall and plays very slow relative to him then he will use his instinct to determine to consider if he should guard that player as there is an uncertainty for him. In this example the important point is the properties are relative to the player and there is a degree for the height and playing skill for the rival player. Fuzzy logic provides a deterministic way for this uncertain situation.
There are some steps to process the fuzzy logic (Figure-1). These steps are; firstly fuzzification where crisp inputs get converted to fuzzy inputs secondly these inputs get processed with fuzzy rules to create fuzzy output and lastly defuzzification which results with degree of result as in fuzzy logic there can be more than one result with different degrees.

Figure 1 – Fuzzy Process Steps (David M. Bourg P.192)
To exemplify the fuzzy process steps, the previous basketball game situation could be used. As mentioned in the example the rival player is tall with 1.87 meters which is quite tall relative to our player and can dribble with 3 m/s which is slow relative to our player. Addition to these data some rules are needed to consider which are called fuzzy rules such as;
if player is short but not fast then guard,
if player is fast but not short then don’t guard
If player is tall then don’t guard
If player is average tall and average fast guard

Figure 2 – how tall

Figure 3- how fast
According to the rules and the input data an output will be created by fuzzy system such as; the degree for guard is 0.7, degree for sometimes guard is 0.4 and never guard is 0.2.

Figure 4-output fuzzy sets
On the last step, defuzzication, is using for creating a crisp output which is a number which may determine the energy that we should use to guard the player during game. The centre of mass is a common method to create the output. On this phase the weights to calculate the mean point is totally depends on the implementation. On this application it is considered to give high weight to guard or not guard but low weight given to sometimes guard. (David M. Bourg, 2004)

Figure 5- fuzzy output (David M. Bourg P.204)
Output = [0.7 * (-10) + 0.4 * 1 + 0.2 * 10] / (0.7 + 0.4 + 0.2) ≈ -3.5
As a result fuzzy logic is using under uncertainty to make a decision and to find out the degree of decision. The problem of fuzzy logic is as the number of inputs increase the number of rules increase exponential.
For more information and its possible application in a game I wrote a little article check this out