2-ary, 3-ary.. n-ary tuples are all distinct data types, so you can't handle them uniformly directly, but you can introduce a type class that provides an interface that allows to define generic zip
and unzip
. Here is how it looks for generic unzip
:
class Tuple t where
type Map (f :: * -> *) t
nilMap :: Proxy t -> (forall a. f a) -> Map f t
consMap :: (forall a. a -> f a -> f a) -> t -> Map f t -> Map f t
Map
maps all types in a tuple type with f
. nilMap
constructs a Mapped tuple that contains empty values (I have no idea why Haskell requires that Proxy t
there). consMap
receives a function, a tuple and a Mapped tuple and zip the tuples with the function pointwise. Here is how instances look for 2- and 3-tuples:
instance Tuple (a, b) where
type Map f (a, b) = (f a, f b)
nilMap _ a = (a, a)
consMap f (x, y) (a, b) = (f x a, f y b)
instance Tuple (a, b, c) where
type Map f (a, b, c) = (f a, f b, f c)
nilMap _ a = (a, a, a)
consMap f (x, y, z) (a, b, c) = (f x a, f y b, f z c)
The gunzip
itself:
gunzip :: forall t. Tuple t => [t] -> Map [] t
gunzip [] = nilMap (Proxy :: Proxy t) []
gunzip (p:ps) = consMap (:) p (gunzip ps)
This looks a lot like transpose
:
transpose :: [[a]] -> [[a]]
transpose [] = repeat [] -- `gunzip` handles this case better
transpose (xs:xss) = zipWith (:) xs (transpose xss)
which it basically is, except with tuples. gunzip
can be equivalently defined in terms of foldr
as follows:
gunzip :: forall t. Tuple t => [t] -> Map [] t
gunzip = foldr (consMap (:)) $ nilMap (Proxy :: Proxy t) []
To define generic zip
we need a type class of splittable data types (is there something like this on Hackage?).
class Splittable f g where
split :: f a -> g a (f a)
E.g. for lists we have
newtype MaybeBoth a b = MaybeBoth { getMaybeBoth :: Maybe (a, b) }
instance Splittable [] MaybeBoth where
split [] = MaybeBoth Nothing
split (x:xs) = MaybeBoth (Just (x, xs))
And here is what we add to the Tuple
type class:
splitMap :: (Biapplicative g, Splittable f g) => Proxy (f t) -> Map f t -> g t (Map f t)
The Biapplicative g
constraint ensures that it's possible to combine g a b
and g c d
into g (a, c) (b, d)
. For 2- and 3- tuples it looks like this:
splitMap _ (a, b) = biliftA2 (,) (,) (split a) (split b)
splitMap _ (a, b, c) = biliftA3 (,,) (,,) (split a) (split b) (split c)
After providing a Biapplicative
instance for MaybeBoth
instance Biapplicative MaybeBoth where
bipure x y = MaybeBoth $ Just (x, y)
MaybeBoth f <<*>> MaybeBoth a = MaybeBoth $ uncurry (***) <$> f <*> a
we can finally define gzip
:
gzip :: forall t. Tuple t => Map [] t -> [t]
gzip a = maybe [] (\(p, a') -> p : gzip a') . getMaybeBoth $ splitMap (Proxy :: Proxy [t]) a
It repeteadly cuts first elements of lists in a tuple, forms a tuple from them and prepends it to the result.
It should be possible to generalize gunzip
by adding a dual to Splittable
(Uniteable
or something like that), but I'll stop here.
EDIT: I couldn't stop.