Here is a Numpythonic approach with broadcasting:
In [83]: A[np.all(np.any((A-B[:, None]), axis=2), axis=0)]
Out[83]:
array([[1, 1, 2],
[1, 1, 3]])
Here is a timeit with other answer:
In [90]: def cal_diff(A, B):
....: A_rows = A.view([('', A.dtype)] * A.shape[1])
....: B_rows = B.view([('', B.dtype)] * B.shape[1])
....: return np.setdiff1d(A_rows, B_rows).view(A.dtype).reshape(-1, A.shape[1])
....:
In [93]: %timeit cal_diff(A, B)
10000 loops, best of 3: 54.1 µs per loop
In [94]: %timeit A[np.all(np.any((A-B[:, None]), axis=2), axis=0)]
100000 loops, best of 3: 9.41 µs per loop
# Even better with Divakar's suggestion
In [97]: %timeit A[~((A[:,None,:] == B).all(-1)).any(1)]
100000 loops, best of 3: 7.41 µs per loop
Well, if you are looking for a faster way you should looking for ways that reduce the number of comparisons. In this case (without considering the order) you can generate a unique number from your rows and compare the numbers which can be done with summing the items power of two.
Here is the benchmark with Divakar's in1d approach:
In [144]: def in1d_approach(A,B):
.....: dims = np.maximum(B.max(0),A.max(0))+1
.....: return A[~np.in1d(np.ravel_multi_index(A.T,dims),\
.....: np.ravel_multi_index(B.T,dims))]
.....:
In [146]: %timeit in1d_approach(A, B)
10000 loops, best of 3: 23.8 µs per loop
In [145]: %timeit A[~np.in1d(np.power(A, 2).sum(1), np.power(B, 2).sum(1))]
10000 loops, best of 3: 20.2 µs per loop
You can use np.diff
to get the an order independent result:
In [194]: B=np.array([[0, 0, 0,], [1, 0, 2,], [1, 0, 3,], [1, 0, 4,], [1, 1, 0,], [1, 1, 1,], [1, 1, 4,], [4, 1, 1]])
In [195]: A[~np.in1d(np.diff(np.diff(np.power(A, 2))), np.diff(np.diff(np.power(B, 2))))]
Out[195]:
array([[1, 1, 2],
[1, 1, 3]])
In [196]: %timeit A[~np.in1d(np.diff(np.diff(np.power(A, 2))), np.diff(np.diff(np.power(B, 2))))]
10000 loops, best of 3: 30.7 µs per loop
Benchmark with Divakar's setup:
In [198]: B = np.random.randint(0,9,(1000,3))
In [199]: A = np.random.randint(0,9,(100,3))
In [200]: A_idx = np.random.choice(np.arange(A.shape[0]),size=10,replace=0)
In [201]: B_idx = np.random.choice(np.arange(B.shape[0]),size=10,replace=0)
In [202]: A[A_idx] = B[B_idx]
In [203]: %timeit A[~np.in1d(np.diff(np.diff(np.power(A, 2))), np.diff(np.diff(np.power(B, 2))))]
10000 loops, best of 3: 137 µs per loop
In [204]: %timeit A[~np.in1d(np.power(A, 2).sum(1), np.power(B, 2).sum(1))]
10000 loops, best of 3: 112 µs per loop
In [205]: %timeit in1d_approach(A, B)
10000 loops, best of 3: 115 µs per loop
Timing with larger arrays (Divakar's solution is slightly faster):
In [231]: %timeit A[~np.in1d(np.diff(np.diff(np.power(A, 2))), np.diff(np.diff(np.power(B, 2))))]
1000 loops, best of 3: 1.01 ms per loop
In [232]: %timeit A[~np.in1d(np.power(A, 2).sum(1), np.power(B, 2).sum(1))]
1000 loops, best of 3: 880 µs per loop
In [233]: %timeit in1d_approach(A, B)
1000 loops, best of 3: 807 µs per loop