Haskell does not require that your functions be total, and doesn't track when they're not. (Total functions are those that have a well defined output for every possible value of their input type)
Even without exceptions or pattern match failures, you can have a function that doesn't define output for some inputs by just going on forever. An example is length (repeat 1)
. This continues to compute forever, but never actually throws an error.
The way Haskell semantics "copes" with this is to declare that there is an "extra" value in every single type; the so called "bottom value", and declare that any computation that doesn't properly complete and produce a normal value of its type actually produces the bottom value. It's represented by the mathematical symbol ⊥ (only when talking about Haskell; there isn't really any way in Haskell to directly refer to this value, but undefined
is often also used since that is a Haskell name that is bound to an error-raising computation, and so semantically produces the bottom value).
This is a theoretical wart in the system, since it gives you the ability to create a 'value' of any type (albeit not a very useful one), and a lot of the reasoning about bits of code being correct based on types actually relies on the assumption that you can't do exactly that (if you're into the Curry-Howard isomorphism between pure functional programs and formal logic, the existence of ⊥ gives you the ability to "prove" logical contradictions, and thus to prove absolutely anything at all).
But in practice it seems to work out that all the reasoning done by pretending that ⊥ doesn't exist in Haskell still generally works well enough to be useful when you're writing "well-behaved" code that doesn't use ⊥ very much.
The main reason for tolerating this situation in Haskell is ease-of-use as a programming language rather than a system of formal logic or mathematics. It's impossible to make a compiler that could actually tell of arbitrary Haskell-like code whether or not each function is total or partial (see the Halting Problem). So a language that wanted to enforce totality would have to either remove a lot of the things you can do, or require you to jump through lots of hoops to demonstrate that your code always terminates, or both. The Haskell designers didn't want to do that.
So given that Haskell as a language is resigned to partiality and ⊥, it may as well give you things like error
as a convenience. After all, you could always write a error :: String -> a
function by just not terminating; getting an immediate printout of the error message rather than having the program just spin forever is a lot more useful to practicing programmers, even if those are both equivalent in the theory of Haskell semantics!
Similarly, the original designers of Haskell decided that implicitly adding a catch-all case to every pattern match that just errors out would be more convenient than forcing programmers to add the error case explicitly every time they expect a part of their code to only ever see certain cases. (Although a lot of Haskell programmers, including me, work with the incomplete-pattern-match warning and almost always treat it as an error and fix their code, and so would probably prefer the original Haskell designers went the other way on this one).
TLDR; exceptions from error
and pattern match failure are there for convenience, because they don't make the system any more broken than it already has to be, without being quite a different system than Haskell.
You can program by throwing and catch exceptions if you really want, including catching the exceptions from error
or pattern match failure, by using the facilities from Control.Exception.
In order to not break the purity of the system you can raise exceptions from anywhere (because the system always has to deal with the possibility of a function not properly terminating and producing a value; "raising an exception" is just another way in which that can happen), but exceptions can only be caught by constructs in IO
. Because the formal semantics of IO
permit basically anything to happen (because it has to interface with the real world and there aren't really any hard restrictions we can impose on that from the definition of Haskell), we can also relax most of the rules we usually need for pure functions in Haskell and still have something that technically fits in the model of Haskell code being pure.
I haven't used this very much at all (usually I prefer to keep my error handling using things that are more well-defined in terms of Haskell's semantic model than the operational model of what IO
does, which can be as simple as Maybe
or Either
), but you can read about it if you want to.