In R, I have a reasonably large data frame (d) which is 10500 by 6000. All values are numeric. It has many na value elements in both its rows and columns, and I am looking to replace these values with a zero. I have used:
d[is.na(d)] <- 0
but this is rather slow. Is there a better way to do this in R?
I am open to using other R packages.
I would prefer it if the discussion focused on computational speed rather than, "why would you replace na's with zeros", for example. And, while I realize a similar Q has been asked (How do I replace NA values with zeros in an R dataframe?) the focus has not been towards computational speed on a large data frame with many missing values.
Thanks!
Edited Solution: As helpfully suggested, changing d to a matrix before applying is.na sped up the computation by an order of magnitude