Pangres is the tool for this job.
Overview here:
https://pypi.org/project/pangres/
Use the function pangres.fix_psycopg2_bad_cols to "clean" the columns in the DataFrame.
Code/usage here:
https://github.com/ThibTrip/pangres/wiki
https://github.com/ThibTrip/pangres/wiki/Fix-bad-column-names-postgres
Example code:
# From: <https://github.com/ThibTrip/pangres/wiki/Fix-bad-column-names-postgres>
import pandas as pd
# fix bad col/index names with default replacements (empty string for '(', ')' and '%'):
df = pd.DataFrame({'test()':[0],
'foo()%':[0]}).set_index('test()')
print(df)
test() foo()%
0 0
# clean cols, index w/ no replacements
df_fixed = fix_psycopg2_bad_cols(df)
print(df_fixed)
test foo
0 0
# fix bad col/index names with custom replacements - you MUST provide replacements for '(', ')' and '%':
# reset df
df = pd.DataFrame({'test()':[0],
'foo()%':[0]}).set_index('test()')
# clean cols, index w/ user-specified replacements
df_fixed = fix_psycopg2_bad_cols(df, replacements={'%':'percent', '(':'', ')':''})
print(df_fixed)
test foopercent
0 0
Will only fix/correct some of the bad characters:
Replaces '%', '(' and ')' (characters that won't play nicely or even at all)
But, useful in that it handles cleanup and upsert.
(p.s., I know this post is over 4 years old, but still shows up in Google results when searching for "pangres upsert determine number inserts and updates" as the top SO result, dated May 13, 2020.)