DataFrames are column-oriented structures, meaning that adding a column to some rows is not a good idea. Instead, you could leverage the support for nullable values in DataFrames and instead of adding an extra column, add an optional value to a Row based on some criteria.
An example:
Let's take a DF of users and pages:
val users = Seq("Alice" , "Bob", "Charly", "Dean", "Eve", "Flor", "Greta")
val pages = (1 to 9).map(i => s"page_$i")
val userPages = for {u <- users
p <- pages} yield (u,p)
val userPagesDF = sparkContext.parallelize(userPages).toDF("user","page")
// a user defined function that takes the last digit from the page and uses it to calculate a "rank". It only ranks pages with a number higher than 7
val rankUDF = udf((p:String) => if (p.takeRight(1).toInt>7) "top" else null)
// New DF with the extra column "rank", which contains values for only some rows
val ranked = userPagesDF.withColumn("rank", topPage($"page"))
ranked.show
+-----+-------+----+
| user| page|rank|
+-----+-------+----+
|Alice| page_1|null|
|Alice| page_2|null|
|Alice| page_3|null|
|Alice| page_4|null|
|Alice| page_5|null|
|Alice| page_6|null|
|Alice| page_7|null|
|Alice| page_8| top|
|Alice| page_9| top|
| Bob| page_1|null|
| Bob| page_2|null|
| Bob| page_3|null|
| Bob| page_4|null|
| Bob| page_5|null|
| Bob| page_6|null|
| Bob| page_7|null|
| Bob| page_8| top|
| Bob| page_9| top|
+-----+-------+----+
ranked.printSchema
root
|-- user: string (nullable = true)
|-- page: string (nullable = true)
|-- rank: string (nullable = true)