I am using D-lib library to use ocular recognition. So I am planning to train my own classifier using the options given in the documentation. I am using Python as a language platform when compared to C++.
So, I have created the two .xml files training and testing using the imglab tool. Do I have to label all the subject names in the imglab tool? I have close to 20000 images. Is it not going to be difficult? Do we have an easy way of doing it? Please find the code matching the scenario attached.
import os
import sys
import glob
import dlib
from skimage import io
# In this example we are going to train a face detector based on the small
# faces dataset in the examples/faces directory. This means you need to supply
# the path to this faces folder as a command line argument so we will know
# where it is.
faces_folder = "/media/praveen/SSD/NIVL_Ocular/NIR_Ocular_Training"
# Now let's do the training. The train_simple_object_detector() function has a
# bunch of options, all of which come with reasonable default values. The next
# few lines goes over some of these options.
options = dlib.simple_object_detector_training_options()
# Since faces are left/right symmetric we can tell the trainer to train a
# symmetric detector. This helps it get the most value out of the training
# data.
options.add_left_right_image_flips = False
# The trainer is a kind of support vector machine and therefore has the usual
# SVM C parameter. In general, a bigger C encourages it to fit the training
# data better but might lead to overfitting. You must find the best C value
# empirically by checking how well the trained detector works on a test set of
# images you haven't trained on. Don't just leave the value set at 5. Try a
# few different C values and see what works best for your data.
options.C = 5
# Tell the code how many CPU cores your computer has for the fastest training.
options.num_threads = 4
options.be_verbose = True
training_xml_path = os.path.join(faces_folder, "/media/praveen/SSD/NIVL_Ocular/praveen_ocular_dataset.xml")
testing_xml_path = os.path.join(faces_folder, "/media/praveen/SSD/NIVL_Ocular/praveen_ocular_test_dataset.xml")
# This function does the actual training. It will save the final detector to
# detector.svm. The input is an XML file that lists the images in the training
# dataset and also contains the positions of the face boxes. To create your
# own XML files you can use the imglab tool which can be found in the
# tools/imglab folder. It is a simple graphical tool for labeling objects in
# images with boxes. To see how to use it read the tools/imglab/README.txt
# file. But for this example, we just use the training.xml file included with
# dlib.
dlib.train_simple_object_detector(training_xml_path, "detector.svm", options)
# Now that we have a face detector we can test it. The first statement tests
# it on the training data. It will print(the precision, recall, and then)
# average precision.
print("") # Print blank line to create gap from previous output
print("Training accuracy: {}".format(
dlib.test_simple_object_detector(training_xml_path, "detector.svm")))
# However, to get an idea if it really worked without overfitting we need to
# run it on images it wasn't trained on. The next line does this. Happily, we
# see that the object detector works perfectly on the testing images.
print("Testing accuracy: {}".format(
dlib.test_simple_object_detector(testing_xml_path, "detector.svm")))
#
# # Now let's use the detector as you would in a normal application. First we
# # will load it from disk.
# detector = dlib.simple_object_detector("detector.svm")
#
# # We can look at the HOG filter we learned. It should look like a face. Neat!
# win_det = dlib.image_window()
# win_det.set_image(detector)
#
# # Now let's run the detector over the images in the faces folder and display the
# # results.
# print("Showing detections on the images in the faces folder...")
# win = dlib.image_window()
# for f in glob.glob(os.path.join(faces_folder, "*.png")):
# print("Processing file: {}".format(f))
# img = io.imread(f)
# dets = detector(img)
# print("Number of faces detected: {}".format(len(dets)))
# for k, d in enumerate(dets):
# print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
# k, d.left(), d.top(), d.right(), d.bottom()))
#
# win.clear_overlay()
# win.set_image(img)
# win.add_overlay(dets)
# dlib.hit_enter_to_continue()