I was trying to use the pyspark.ml.evaluation Binary classification metric like below
evaluator = BinaryClassificationEvaluator(rawPredictionCol="prediction")
print evaluator.evaluate(predictions)
My Predictions data frame looks like this:
predictions.select('rating','prediction')
predictions.show()
+------+------------+
|rating| prediction|
+------+------------+
| 1| 0.14829934|
| 1|-0.017862909|
| 1| 0.4951505|
| 1|0.0074382657|
| 1|-0.002562912|
| 1| 0.0208337|
| 1| 0.049362548|
| 1| 0.09693333|
| 1| 0.17998546|
| 1| 0.019649783|
| 1| 0.031353004|
| 1| 0.03657037|
| 1| 0.23280995|
| 1| 0.033190556|
| 1| 0.35569906|
| 1| 0.030974165|
| 1| 0.1422375|
| 1| 0.19786166|
| 1| 0.07740938|
| 1| 0.33970386|
+------+------------+
only showing top 20 rows
The datatype of each column is as follows:
predictions.printSchema()
root
|-- rating: integer (nullable = true)
|-- prediction: float (nullable = true)
Now I get an error with above Ml code saying prediction column is Float and expected a VectorUDT.
/Users/i854319/spark/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py in __call__(self, *args)
811 answer = self.gateway_client.send_command(command)
812 return_value = get_return_value(
--> 813 answer, self.gateway_client, self.target_id, self.name)
814
815 for temp_arg in temp_args:
/Users/i854319/spark/python/pyspark/sql/utils.pyc in deco(*a, **kw)
51 raise AnalysisException(s.split(': ', 1)[1], stackTrace)
52 if s.startswith('java.lang.IllegalArgumentException: '):
---> 53 raise IllegalArgumentException(s.split(': ', 1)[1], stackTrace)
54 raise
55 return deco
IllegalArgumentException: u'requirement failed: Column prediction must be of type org.apache.spark.mllib.linalg.VectorUDT@f71b0bce but was actually FloatType.'
So I thought of converting the predictions column from float to VectorUDT as below:
Applying the schema to the dataframe to convert the float column type to VectorUDT
from pyspark.sql.types import IntegerType, StructType,StructField
schema = StructType([
StructField("rating", IntegerType, True),
StructField("prediction", VectorUDT(), True)
])
predictions_dtype=sqlContext.createDataFrame(prediction,schema)
But Now I get this error.
---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)
<ipython-input-30-8fce6c4bbeb4> in <module>()
4
5 schema = StructType([
----> 6 StructField("rating", IntegerType, True),
7 StructField("prediction", VectorUDT(), True)
8 ])
/Users/i854319/spark/python/pyspark/sql/types.pyc in __init__(self, name, dataType, nullable, metadata)
401 False
402 """
--> 403 assert isinstance(dataType, DataType), "dataType should be DataType"
404 if not isinstance(name, str):
405 name = name.encode('utf-8')
AssertionError: dataType should be DataType
It takes so much time to run an ml algo in spark libraries with so many weird errors. Even I tried Mllib with RDD data. That is giving the ValueError: Null pointer exception.
Please advise.