I am not sure if this question is still relevant to the current version of pySpark, but here is the solution I worked out a couple weeks after posting this question. The code is rather ugly and possibly inefficient, but I am posting it here due to the continued interest in this question.:
from pyspark import SparkContext
from pyspark.sql import HiveContext
from pyspark import SparkConf
from py4j.protocol import Py4JJavaError
myConf = SparkConf(loadDefaults=True)
sc = SparkContext(conf=myConf)
hc = HiveContext(sc)
def chunks(lst, k):
"""Yield k chunks of close to equal size"""
n = len(lst) / k
for i in range(0, len(lst), n):
yield lst[i: i + n]
def reconstruct_rdd(lst, num_parts):
partitions = chunks(lst, num_parts)
for part in range(0, num_parts - 1):
print "Partition ", part, " started..."
partition = next(partitions) # partition is a list of lists
if part == 0:
prime_rdd = sc.parallelize(partition)
else:
second_rdd = sc.parallelize(partition)
prime_rdd = prime_rdd.union(second_rdd)
print "Partition ", part, " complete!"
return prime_rdd
def build_col_name_list(len_cols):
name_lst = []
for i in range(1, len_cols):
idx = "_" + str(i)
name_lst.append(idx)
return name_lst
def set_spark_df_header(header, sdf):
oldColumns = build_col_name_lst(len(sdf.columns))
newColumns = header
sdf = reduce(lambda sdf, idx: sdf.withColumnRenamed(oldColumns[idx], newColumns[idx]), xrange(len(oldColumns)), sdf)
return sdf
def convert_pdf_matrix_to_sdf(pdf, sdf_header, num_of_parts):
try:
sdf = hc.createDataFrame(pdf)
except ValueError:
lst = pdf.values.tolist() #Need to convert to list of list to parallelize
try:
rdd = sc.parallelize(lst)
except Py4JJavaError:
rdd = reconstruct_rdd(lst, num_of_parts)
sdf = hc.createDataFrame(rdd)
sdf = set_spark_df_header(sdf_header, sdf)
return sdf