I understand that both Euler and Quaternion rotation types have their own distinctive quirks, however the problem that I'm having is that (for example) when performing the following rotations to an object:
- rotateX = 90.0
- rotateY = 90.0
- ... Oh, hang on a minute... now the X and Z axis are basically the same!
See, what I want is to rotate a cube say 90 degrees X, 90 degrees Y and still have all axis points back in their original position as opposed of rotating locally.
Any code examples would be ideal - Here is the code I'm currently using:
_model = scale(_scale) *
translate(_position) *
( rotate(_rotation.data[0], 1.0f, 0.0f, 0.0f) *
rotate(_rotation.data[1], 0.0f, 1.0f, 0.0f) *
rotate(_rotation.data[2], 0.0f, 0.0f, 1.0f) );
I have a Math.h that calculates the rotations like so:
template <typename T>
static inline Tmat4<T> rotate(T angle, T x, T y, T z)
{
Tmat4<T> result;
const T x2 = x * x;
const T y2 = y * y;
const T z2 = z * z;
float rads = float(angle) * 0.0174532925f;
const float c = cosf(rads);
const float s = sinf(rads);
const float omc = 1.0f - c;
result[0] = Tvec4<T>(T(x2 * omc + c), T(y * x * omc + z * s), T(x * z * omc - y * s), T(0));
result[1] = Tvec4<T>(T(x * y * omc - z * s), T(y2 * omc + c), T(y * z * omc + x * s), T(0));
result[2] = Tvec4<T>(T(x * z * omc + y * s), T(y * z * omc - x * s), T(z2 * omc + c), T(0));
result[3] = Tvec4<T>(T(0), T(0), T(0), T(1));
return result;
}