I have an mainFun
that takes four parameters x
, a
, b
, and c
, all vector-valued and possibly of varying length. This function calls expensiveFun
that is computationally expensive so I'd like to reduce the number of calls to expensiveFun
. This function needs to be called for each value in x[i]
, a[i]
, b[i]
, c[i]
and if a
, b
, or c
are of shorter length, then they need to be "wrapped" (their index is in modulo a[i % a.size()]
). It would be the best to precompute the expensiveFun
for each possible distinct value of x
(i.e. all integers 0,...,max(x)) and then just fill-in the output out
by out[i] = precomputedValues[x[i]]
. This can be easily achieved if a
, b
, and c
have the same length (example below), but it gets ugly if they are not. Is there any way to make it more efficient for case when the lengths of parameter vectors differ?
Below I provide a reproducible example. It's a simplified code, written just to serve as example.
std::vector<int> expensiveFun(int x, int a, int b, int c) {
std::vector<int> out(x+1);
out[0] = a+b*c;
for (int i = 1; i <= x; i++)
out[i] = out[i-1] * i + a * (b+c);
return out;
}
std::vector<int> mainFun(
std::vector<int> x,
std::vector<int> a,
std::vector<int> b,
std::vector<int> c
) {
int n = x.size();
int a_size = a.size();
int b_size = b.size();
int c_size = c.size();
std::vector<int> out(n);
// easy
if (a_size == b_size && b_size == a_size) {
int max_x = 0;
for (int j = 0; j < n; j++)
if (x[j] > max_x)
max_x = x[j];
for (int i = 0; i < a_size; i++) {
int max_x = 0;
for (int j = 0; j < n; j += a_size) {
if (x[j] > max_x)
max_x = x[j];
}
std::vector<int> precomputedValues = expensiveFun(max_x, a[i], b[i], c[i]);
for (int j = i; j < n; j += a_size) {
out[j] = precomputedValues[x[j]];
}
}
// otherwise give up
} else {
for (int j = 0; j < n; j++) {
out[j] = expensiveFun(x[j], a[j % a_size], c[j % c_size], c[j % c_size]).back();
}
}
return out;
}
Example input:
x = {0, 1, 5, 3, 2, 1, 0, 4, 4, 2, 3, 4, 1}
a = {1, 2, 3}
b = {1, 2}
c = {3, 4, 5, 6}
Parameters should be folded so that they become:
x = {0, 1, 5, 3, 2, 1, 0, 4, 4, 2, 3, 4, 1}
a = {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1}
b = {1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1}
c = {3, 4, 5, 6, 3, 4, 5, 6, 3, 4, 5, 6, 3}
The output is not important at the moment since the main issue in here is about efficiently dealing with varying-size parameter vectors.