Hello there I just write this code for deep learning:
import tensorflow as tf
from tensorflow.example.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500
n_classes = 10
batch_size = 100
x = tf.placeholder('float', [None, 784])
y = tf.placeholder('float')
def neural_network_model(data):
hidden_1_layer = {'weights': tf.Variable(tf.random_normal([784, n_nodes_hl1])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_2_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl1,n_nodes_hl2])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_3_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl2,n_nodes_hl3])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl3,n_classes])),
'biases': tf.Variable(tf.random_normal([n_classes]))}
l1 = tf.add(tf.matmul(data, hidden_1_layer['weights'], hidden_1_layer['biases']))
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights'], hidden_2_layer['biases']))
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2, hidden_3_layer['weights'] , hidden_3_layer['biases']))
l3 = tf.nn.relu(l3)
output = tf.matmul(l3, ouput_layer['weights']) + output_layer['biases']
return output
def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce.mean(tf.nn.softmax_cross_entropy_with_logits(prediction,y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
hm_epochs = 10
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for epoch in range(hm_epochs):
epoch_loss = 0
for _ in range(int(mnist.train.num_example/batch_size)):
epoch_x, epoch_y = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer, cost], feed_dict = {x: epoch_x, y: epoch_y})
epoch_loss += c
print('Epoch', epoch, 'completed out of', hm_epochs, 'loss:', epoch_loss)
correct = tf.equal(tf.argmax(prediction,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print('Accuracy:', accuracy.eval({x:mnist.test.images, y:mnist.test.labels}))
train_neural_network(x)
But I got this error:
python3 deep-net_2.py
File "deep-net_2.py", line 28 hidden_3_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl2,n_nodes_hl3])), ^ IndentationError: unindent does not match any outer indentation level
What am I doing wrong?