The solution provided by @Divakar is ideal for integer data, but beware of precision issues for floating point values, especially if they span multiple orders of magnitude (e.g. [[1.0, 2,0, 3.0, 1.0e+20],...]
). In some cases r
may be so large that applying a+r
and b+r
wipes out the original values you're trying to run searchsorted
on, and you're just comparing r
to r
.
To make the approach more robust for floating-point data, you could embed the row information into the arrays as part of the values (as a structured dtype), and run searchsorted on these structured dtypes instead.
def searchsorted_2d (a, v, side='left', sorter=None):
import numpy as np
# Make sure a and v are numpy arrays.
a = np.asarray(a)
v = np.asarray(v)
# Augment a with row id
ai = np.empty(a.shape,dtype=[('row',int),('value',a.dtype)])
ai['row'] = np.arange(a.shape[0]).reshape(-1,1)
ai['value'] = a
# Augment v with row id
vi = np.empty(v.shape,dtype=[('row',int),('value',v.dtype)])
vi['row'] = np.arange(v.shape[0]).reshape(-1,1)
vi['value'] = v
# Perform searchsorted on augmented array.
# The row information is embedded in the values, so only the equivalent rows
# between a and v are considered.
result = np.searchsorted(ai.flatten(),vi.flatten(), side=side, sorter=sorter)
# Restore the original shape, decode the searchsorted indices so they apply to the original data.
result = result.reshape(vi.shape) - vi['row']*a.shape[1]
return result
Edit: The timing on this approach is abysmal!
In [21]: %timeit searchsorted_2d(a,b)
10 loops, best of 3: 92.5 ms per loop
You would be better off just just using map
over the array:
In [22]: %timeit np.array(list(map(np.searchsorted,a,b)))
100 loops, best of 3: 13.8 ms per loop
For integer data, @Divakar's approach is still the fastest:
In [23]: %timeit searchsorted2d(a,b)
100 loops, best of 3: 7.26 ms per loop