what is the difference between @classmethod and @cm from the code below?
decorator is calling during class creation time before an instance is created.
In your case, since @cm returns func(self.__class__, *args, **kwargs)
, which is relied on self
, it should be used as a instance method.
On the other hand, @classmethod is able to use before an instance is created.
def cm(func):
def decorated(self, *args, **kwargs):
return func(self.__class__, *args, **kwargs)
return decorated
class C:
@classmethod
def inc1(cls):
(blablabla)
@cm
def inc3(cls):
(blablabla)
C().inc1() # works as a instance method
C.inc1() # works as a classmethod
C().inc3() # works as a instance method
C.inc3() # TypeError: unbound method decorated() must be called with C instance as first argument (got nothing instead)
For a combination of classmethod and property, it could be done by return an customized object. Reference
class ClassPropertyDescriptor(object):
def __init__(self, f):
self.f = f
def __get__(self, obj, klass=None):
if klass is None:
klass = type(obj)
return self.f.__get__(obj, klass)()
def classproperty(func):
if not isinstance(func, (classmethod, staticmethod)):
func = classmethod(func)
return ClassPropertyDescriptor(func)
class C:
@classproperty
def inc1(cls):
(blablabla)
C.inc1 # works as a classmethod property
[Edit]
Q. What does the classmethod() call do with the method it decorates to achieve that?
The implementation can be done by using descriptor
class ClassMethodDescriptor(object):
def __init__(self, f):
self.f = f
def __get__(self, obj, klass=None):
if klass is None:
klass = type(obj)
def newfunc(*args):
return self.f(klass, *args)
return newfunc
def myclassmethod(func):
return ClassMethodDescriptor(func)
class C:
@myclassmethod
def inc1(cls):
(blablabla)
C.inc1() # works as a classmethod
Q. Why is the result not callable?
Because the implementation of ClassMethodDescriptor
does not define __call__
function. Once using @property
, it will return ClassMethodDescriptor which is not callable.