I'm trying to change my DataFrame's values like this:
df['Tokens'] = tokens
Where tokens
is a 2-d np.array
.
I expected to have a column, where each element is a 1-d np.array
, but found out, that each element took only first element of a correspoding 1-d array
. Is there a way to store arrays in DataFrame's elements?
Asked
Active
Viewed 63 times
0
1 Answers
3
Is that what you want?
In [26]: df = pd.DataFrame(np.random.rand(5,2), columns=list('ab'))
In [27]: df
Out[27]:
a b
0 0.513723 0.886019
1 0.197956 0.172094
2 0.131495 0.476552
3 0.678821 0.106523
4 0.440118 0.802589
In [28]: arr = df.values
In [29]: arr
Out[29]:
array([[ 0.51372311, 0.88601887],
[ 0.19795635, 0.17209383],
[ 0.13149478, 0.47655197],
[ 0.67882124, 0.10652332],
[ 0.44011802, 0.80258924]])
In [30]: df['c'] = arr.tolist()
In [31]: df
Out[31]:
a b c
0 0.513723 0.886019 [0.5137231110962795, 0.8860188692834928]
1 0.197956 0.172094 [0.19795634688449892, 0.17209383434042336]
2 0.131495 0.476552 [0.13149477867656167, 0.47655196508193576]
3 0.678821 0.106523 [0.6788212365523125, 0.10652331756477551]
4 0.440118 0.802589 [0.44011802077658635, 0.8025892383754725]
Timing for 5M rows DF:
In [36]: big = pd.concat([df] * 10**6, ignore_index=True)
In [38]: big.shape
Out[38]: (5000000, 2)
In [39]: arr = big.values
In [40]: %timeit arr.tolist()
1 loop, best of 3: 2.27 s per loop
In [41]: %timeit list(arr)
1 loop, best of 3: 3.62 s per loop

MaxU - stand with Ukraine
- 205,989
- 36
- 386
- 419
-
1perhaps `df.values.tolist()` will be better: http://stackoverflow.com/a/40593934/3765319 – Kartik Nov 17 '16 at 19:00
-
@Kartik, it's a good point, thank you!! I've corrected my answer – MaxU - stand with Ukraine Nov 17 '16 at 19:06
-
Out of curiosity, is `df.as_matrix()[:, :2]` in a lamba function worthwhile or would the list approach work best? – anshanno Nov 17 '16 at 19:07
-
@anshanno, it's an interesting idea! Could you please add it as your own answer? – MaxU - stand with Ukraine Nov 17 '16 at 19:13