I am a PhD student studying Market microstructure. I need to deal with very large datasets (millisecond data that are hundreds of GB). I have been using SAS which is quite nice for processing big data in data frame format. However, it is costly. I would like to use Python for my study/research. I have some but not advance skills in Python. I have heard of Pandas which is quite efficient in processing data frames but it is limited to RAM, which is not quite good for my purpose.
What I have tried: I have tried to iterate data line by line, process them and store into dictionaries but this has memory constraint. I got Memory Error and I can see Python chewed up all the RAM (I have 32gb). This dataset is still very small (500 mb) compared to what I will be dealing with later (50~100 gb). Also, there are things that are difficult to do line by line such as regressions, graphs etc. So my question is how should I process and store such data?
The input data looks like this:
#RIC Date[L] Time[L] Type Price Volume Bid Price Ask Price
TPI.AX 20140820 00:11.7 Quote 0.91
TPI.AX 20140820 00:11.7 Trade 0.91 10000
TPI.AX 20140820 00:21.5 Quote 0.91
TPI.AX 20140820 00:22.1 Quote 0.905
TPI.AX 20140820 00:42.2 Quote 0.905
TPI.AX 20140820 00:42.6 Trade 0.9075 117
TPI.AX 20140820 00:43.1 Trade 0.9075 495
TPI.AX 20140820 00:49.6 Quote 0.905
TPI.AX 20140820 00:57.6 Quote 0.905
TPI.AX 20140820 00:57.6 Quote 0.905
TPI.AX 20140820 00:58.3 Quote 0.905
TPI.AX 20140820 01:02.6 Quote 0.91
TPI.AX 20140820 01:02.6 Quote 0.91
TPI.AX 20140820 01:02.6 Quote 0.905
TPI.AX 20140820 01:02.6 Trade 0.91 9365
TPI.AX 20140820 01:02.6 Trade 0.91 9041
These are my code:
def spread_calculation(input_file_list, output_file):
"""This function calculates the spreads for securities in input_file_list
input: trade and quote data from TRTH
2 parameters: 1. list of file names, 2.output file name
output: csv file contains spreads"""
# Set variables:
date = None
exchange_bbo = defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(float)))))
effective_spread = defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(float)))))
time_bucket = [i * 100000.0 for i in range(0, (16 * 60 * 60 * 1000) * 1000 / 100000)]
for file in input_file_list:
file_to_open = '%s.csv' % file
reader = csv.DictReader(open(file_to_open, 'rb'))
for i in reader:
if not bool(date):
date = i['Date[L]'][0:4] + "-" + i['Date[L]'][4:6] + "-" + i['Date[L]'][6:8]
if i['Type'] == 'Quote' and (time_to_milli(i['Time[L]']) <= (16*60*60*1000)*1000):
security = i['#RIC'].split('.')[0]
exchange = i['#RIC'].split('.')[1]
timestamp = float(time_to_milli(i['Time[L]']))
bucket = ceil(float(time_to_milli(i['Time[L]'])) / 100000.0) * 100000.0
if i['Bid Price'] == "":
bid = 0.0
else:
bid = float(i['Bid Price'])
if i['Ask Price'] == "":
ask = 0.0
else:
ask = float(i['Ask Price'])
if bid < ask < 199999.99:
if not bool(exchange_bbo[security][exchange][date][bucket]['ask']):
exchange_bbo[security][exchange][date][bucket]['ask'] = ask
exchange_bbo[security][exchange][date][bucket]['diff_ask'] = bucket - timestamp
elif exchange_bbo[security][exchange][date][bucket]['diff_ask'] > bucket - timestamp:
exchange_bbo[security][exchange][date][bucket]['ask'] = ask
exchange_bbo[security][exchange][date][bucket]['diff_ask'] = bucket - timestamp
if not bool(exchange_bbo[security][exchange][date][bucket]['bid']):
exchange_bbo[security][exchange][date][bucket]['bid'] = bid
exchange_bbo[security][exchange][date][bucket]['diff_bid'] = bucket - timestamp
elif exchange_bbo[security][exchange][date][bucket]['diff_bid'] > bucket - timestamp:
exchange_bbo[security][exchange][date][bucket]['bid'] = bid
exchange_bbo[security][exchange][date][bucket]['diff_bid'] = bucket - timestamp
if i['Type'] == 'Trade' and i['Price'] != "" and i['Price'] != 0.0:
timestamp = float(time_to_milli(i['Time[L]']))
bucket = ceil(float(time_to_milli(i['Time[L]'])) / 100000.0) * 100000.0
security = i['#RIC'].split('.')[0]
exchange = i['#RIC'].split('.')[1]
price = float(i['Price'])
volume= float(i['Volume'])
if not bool(exchange_bbo[security][exchange][date][bucket]['price']):
exchange_bbo[security][exchange][date][bucket]['price'] = price
exchange_bbo[security][exchange][date][bucket]['volume'] = volume
exchange_bbo[security][exchange][date][bucket]['time_diff'] = bucket - timestamp
elif exchange_bbo[security][exchange][date][bucket]['time_diff'] > bucket - timestamp and price != 0.0:
exchange_bbo[security][exchange][date][bucket]['price'] = price
exchange_bbo[security][exchange][date][bucket]['volume'] = volume
exchange_bbo[security][exchange][date][bucket]['time_diff'] = bucket - timestamp
# Fill the empty buckets - exchange level
for security in exchange_bbo:
for exchange in exchange_bbo[security]:
for date in exchange_bbo[security][exchange]:
for bucket in time_bucket:
previous = bucket - 100000.0
# best offer
bo_t = exchange_bbo[security][exchange][date][bucket]['ask']
bo_t1 = exchange_bbo[security][exchange][date][previous]['ask']
if bo_t == 0.0 and bo_t1 != 0.0:
exchange_bbo[security][exchange][date][bucket]['ask'] = bo_t1
# best bid
bb_t = exchange_bbo[security][exchange][date][bucket]['bid']
bb_t1 = exchange_bbo[security][exchange][date][previous]['bid']
if bb_t == 0.0 and bb_t1 != 0.0:
exchange_bbo[security][exchange][date][bucket]['bid'] = bb_t1
for security in exchange_bbo:
for exchange in exchange_bbo[security]:
for date in exchange_bbo[security][exchange]:
for bucket in exchange_bbo[security][exchange][date]:
if not bool(exchange_bbo[security][exchange][date][bucket]['price']):
nbo = exchange_bbo[security][exchange][date][bucket]['ask']
nbb = exchange_bbo[security][exchange][date][bucket]['bid']
midpoint = (nbo + nbb) / 2.0
price = exchange_bbo[security][exchange][date][bucket]['price']
volume= exchange_bbo[security][exchange][date][bucket]['volume']
# print security, exchange, bucket, price, midpoint
if price > 0.0 and midpoint != 0.0:
effective_spread[security][exchange][date][bucket]['espread_bps'] = 2.0 * abs(price - midpoint)/midpoint
effective_spread[security][exchange][date][bucket]['volume']=volume
effective_spread[security][exchange][date]['count'] += 1.0
data_writer = csv.DictWriter(open(output_file, 'wb'),
fieldnames=['security', 'exchange', 'date', 'bucket' 'espread_bps', 'volume', 'count'])
data_writer.writeheader()
for security in effective_spread:
for exchange in effective_spread[security]:
for date in effective_spread[security][exchange]:
for bucket in effective_spread[security][exchange][date]:
espread_bps = effective_spread[security][exchange][date][bucket]['espread_bps']
volume = effective_spread[security][exchange][date][bucket]['volume']
count = effective_spread[security][exchange][date][bucket]['count']
data_writer.writerow({'security': security, 'exchange': exchange, 'date': date, 'bucket': bucket,
'espread_bps': espread_bps, 'volume': volume, 'count': count})
input_files = ['ScandinavianTAQ']
Thank you so much