Below is the code I am struggling with as a beginner:
commonfields = arcpy.ListFields(gt_pnts)
names = [f.name for f in commonfields]
needed_names = names[3:]
gt_pnts_arr = arcpy.da.FeatureClassToNumPyArray(gt_pnts, needed_names)
gt_pnts_arr = gt_pnts_arr.reshape((gt_pnts_arr.shape[0],1))
eq_smpled_pnts_arr = arcpy.da.FeatureClassToNumPyArray(eq_smpled_pnts, needed_names)
eq_smpled_pnts_arr = eq_smpled_pnts_arr.reshape((eq_smpled_pnts_arr.shape[0],1))
master_table = np.concatenate((gt_pnts_arr, eq_smpled_pnts_arr), axis=0)
np.savetxt(outputcsvfilename,master_table, fmt="%.1f")
Error is as below:
TypeError: float argument required, not numpy.void
I searched and found this exception raised when datatype is not defined. But when I test as below I am in the dilemma-
>>>master_table.dtype.descr
>>>[('grid_code', '<i4'), ('b1_Clip_ProximityRaster1', '<f4'), ('b2_Clip_ProximityRaster1', '<f4'), ('b3_Clip_ProximityRaster1', '<f4'), ('b4_Clip_ProximityRaster1', '<f4'), ('b5_Clip_ProximityRaster1', '<f4'), ('b6_Clip_ProximityRaster1', '<f4'), ('b7_Clip_ProximityRaster1', '<f4'), ('b8_Clip_ProximityRaster1', '<f4'), ('b9_Clip_ProximityRaster1', '<f4'), ('b10_Clip_ProximityRaster1', '<f4'), ('b11_Clip_ProximityRaster1', '<f4'), ('b12_Clip_ProximityRaster1', '<f4'), ('b13_Clip_ProximityRaster1', '<f4'), ('resp', '<U2')]
>>>master_table
array([[ (13, 13.0, 3810.0, 3810.0, 1982.952392578125, 3873.71923828125, 34869.9140625, 5483.3564453125, 7272.138671875, 4409.591796875, 872.0665283203125, 36238.62109375, 4441.62109375, 6775.2861328125, u'1')],
[ (1, 1.0, 3601.99951171875, 3603.12353515625, 1626.9295654296875, 3725.922607421875, 34595.9453125, 5810.5595703125, 7592.90478515625, 4476.0361328125, 576.2811889648438, 36462.984375, 4499.0, 7164.47509765625, u'1')],
[ (13, 13.0, 3721.93505859375, 3723.02294921875, 1642.3458251953125, 3842.928466796875, 34713.43359375, 5702.3681640625, 7597.17041015625, 4562.07177734375, 657.9513549804688, 36343.12890625, 4586.9599609375, 7111.0126953125, u'1')],.....................
>>>master_table.shape
>>>(50, 1)
>>>gt_pnts_arr.shape
>>>(25, 1)
Even I can not load this master_table
into pandas dataframe as below-
df = pd.DataFrame(data=master_table[1:,1:], index=master_table[1:,0],columns=master_table[0,1:])
My table datatypes:
There are 13 colums and 50 rows in the master_table
.First and last column datatype is respectively integer and integer but all other(11) data type is float.