According to http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html I read:
"The fit time complexity is more than quadratic with the number of samples which makes it hard to scale to dataset with more than a couple of 10000 samples."
I have currently 350,000 samples and 4,500 classes and this number will grow further to 1-2 million samples and 10k + classes.
My problem is that I am running out of memory. All is working as it should when I use just 200,000 samples with less than 1000 classes.
Is there a way to build-in or use something like minibatches with SVM? I saw there exists MiniBatchKMeans but I dont think its for SVM?
Any input welcome!