A few points:
(1) With cross-validation you measure the accuracy of your model (trained on the training dataset) on the held-out dataset, not on the entire dataset.
(2) You need to select the values of the hyper-parameters (C, gamma) before you compute the matrix.
(3) you can use caret package to compute the desired probability matrix, but since it's multiclass classification problem, you need to choose which class you want to compute the probability for, before you compute the matrix.
Use the following code on iris, which has 150 data points, out of which 15 points will be randomly selected as validation data for each fold. Let's find the probability the predicted class is setosa and compute the 150x11 matrix, where the last column is a binary column representing whether the actual class of the data point is setosa or not.
K <- 10 # number of folds
set.seed(123)
library(caret)
library(reshape2)
trctl <- trainControl(method = "cv", number = K, savePredictions = TRUE, classProbs = TRUE)
res <- train(Species ~ ., data = iris, method="svmRadial", trControl = trctl)
res.C1 <- subset(res$pred, C==1)
head(res.C1)
pred obs setosa versicolor virginica rowIndex sigma C Resample
31 setosa setosa 0.980011940 0.009115859 0.010872201 17 1.421405 1 Fold01
32 setosa setosa 0.872285443 0.051664831 0.076049726 23 1.421405 1 Fold01
33 setosa setosa 0.983836684 0.007452339 0.008710978 35 1.421405 1 Fold01
34 setosa setosa 0.956874365 0.018767699 0.024357936 38 1.421405 1 Fold01
35 setosa setosa 0.979355342 0.009425609 0.011219049 39 1.421405 1 Fold01
36 versicolor versicolor 0.009445829 0.935110658 0.055443514 55 1.421405 1 Fold01
cbind.data.frame(round(dcast(res.C1, rowIndex~Resample, value.var = 'setosa'),2), setosa=res.C1$obs=='setosa')
rowIndex Fold01 Fold02 Fold03 Fold04 Fold05 Fold06 Fold07 Fold08 Fold09 Fold10 setosa
1 1 NA NA NA NA NA NA NA NA NA 0.99 TRUE
2 2 NA NA NA NA NA NA NA NA 0.98 NA TRUE
3 3 NA NA NA NA NA 0.98 NA NA NA NA TRUE
4 4 NA NA NA NA NA NA 0.98 NA NA NA TRUE
5 5 NA NA NA 0.99 NA NA NA NA NA NA TRUE
6 6 NA 0.98 NA NA NA NA NA NA NA NA FALSE
7 7 NA NA NA NA 0.97 NA NA NA NA NA FALSE
8 8 NA NA 0.99 NA NA NA NA NA NA NA FALSE
9 9 NA 0.96 NA NA NA NA NA NA NA NA FALSE
10 10 NA 0.98 NA NA NA NA NA NA NA NA FALSE
# ... ...
145 145 NA NA NA NA NA NA NA NA 0.01 NA FALSE
146 146 NA NA NA 0.01 NA NA NA NA NA NA FALSE
147 147 NA NA NA 0.01 NA NA NA NA NA NA FALSE
148 148 NA NA NA NA NA NA NA NA NA 0.01 FALSE
149 149 NA NA NA NA NA NA NA NA 0.02 NA FALSE
150 150 NA NA NA NA NA NA NA 0.01 NA NA FALSE