I'm studying the Conway's Game of Life to implement it on my own, and came across the following implementation with the rules:
Given a board with m by n cells, each cell has an initial state live (1) or dead (0). Each cell interacts with its eight neighbors (horizontal, vertical, diagonal) using the following four rules (taken from the above Wikipedia article):
- Any live cell with fewer than two live neighbors dies, as if caused by under-population.
- Any live cell with two or three live neighbors lives on to the next generation.
- Any live cell with more than three live neighbors dies, as if by over-population..
- Any dead cell with exactly three live neighbors becomes a live cell, as if by reproduction.
And implementation (https://discuss.leetcode.com/topic/29054/easiest-java-solution-with-explanation):
public void gameOfLife(int[][] board) {
if (board == null || board.length == 0) return;
int m = board.length, n = board[0].length;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
int lives = liveNeighbors(board, m, n, i, j);
// In the beginning, every 2nd bit is 0;
// So we only need to care about when will the 2nd bit become 1.
if (board[i][j] == 1 && lives >= 2 && lives <= 3) {
board[i][j] = 3; // Make the 2nd bit 1: 01 ---> 11
}
if (board[i][j] == 0 && lives == 3) {
board[i][j] = 2; // Make the 2nd bit 1: 00 ---> 10
}
}
}
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
board[i][j] >>= 1; // Get the 2nd state.
}
}
}
public int liveNeighbors(int[][] board, int m, int n, int i, int j) {
int lives = 0;
for (int x = Math.max(i - 1, 0); x <= Math.min(i + 1, m - 1); x++) {
for (int y = Math.max(j - 1, 0); y <= Math.min(j + 1, n - 1); y++) {
lives += board[x][y] & 1;
}
}
lives -= board[i][j] & 1;
return lives;
}
And driver:
public static void main(String args[]) {
GameOfLife gl = new GameOfLife();
int[][] board = {
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 1, 0, 0, 0, 0, 0},
{0, 1, 0, 1, 0, 0, 0, 0, 0},
{0, 0, 1, 1, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0}
};
gl.gameOfLife(board);
}
And my question is, what do the x
and y
in liveNeighbors()
represent? Do not understand why the need for Math.min()
and Math.max()
. And also, does lives
represent the amount of initialized lives on the board?