I am not sure what is right terminology here. Please correct. I have a grid (2D array) that is looped. By this I mean first row is the next after last row. Same for columns.
I want to slice subset of big grid having this looped rule in mind. So, having grid:
[[ 0 1 2 3 4 5 6 7 8 9]
[10 11 12 13 14 15 16 17 18 19]
[20 21 22 23 24 25 26 27 28 29]
[30 31 32 33 34 35 36 37 38 39]
[40 41 42 43 44 45 46 47 48 49]
[50 51 52 53 54 55 56 57 58 59]
[60 61 62 63 64 65 66 67 68 69]
[70 71 72 73 74 75 76 77 78 79]
[80 81 82 83 84 85 86 87 88 89]
[90 91 92 93 94 95 96 97 98 99]]
And I want subset with size 3 by 3 centered in the middle (5,5), I would get:
[[44 45 46]
[54 55 56]
[64 65 66]]
But if I want it to be centered in (0,0) I would get:
[[99 90 91]
[ 9 0 1]
[19 10 11]]
In my current solution I've combined np.roll
with slicing. It's working, but I am looking for more performant solution.
My current solution:
def get_centered_section(arr, center, side_size):
if side_size % 2 is 0:
raise "size shuold be odd number"
half_side_size = int((side_size - 1) / 2)
w, h = arr.shape
x, y = center
ystart = y - half_side_size
if ystart < 0:
arr = np.roll(arr, abs(ystart), 0)
ystart = 0
elif ystart + side_size >= h:
overflow = ystart + side_size - h
ystart -= overflow
arr = np.roll(arr, -overflow, 0)
xstart = x - half_side_size
if xstart < 0:
arr = np.roll(arr, abs(xstart), 1)
xstart = 0
elif xstart + side_size >= w:
overflow = xstart + side_size - w
xstart -= overflow
arr = np.roll(arr, -overflow, 1)
return arr[ystart:ystart+side_size,xstart:xstart+side_size]
test_a1 = np.reshape(np.arange(10*10), (10, 10))
get_centered_section(test_a1, (0, 0), 3)
Maybe there is a way to cache my way out. My specific usage will require going through each cell getting this kinda slice.