1

I am trying to perform global fitting with symfit package, following symfit documentation.

import numpy as np
import symfit as sf
import matplotlib.pyplot as plt
%matplotlib inline # for ipynb

# Generate example data
t = np.arange(0.0, 600.1, 30)
k = 0.005
C1_0, C2_0 = 1.0, 2.0
C1 = C1_0 * np.exp(-k*t)
C2 = C2_0 * np.exp(-k*t)

# Construct model
x_1, x_2, y_1, y_2 = sf.variables('x_1, x_2, y_1, y_2')
kg = sf.Parameter(value=0.01, min=0.0, max=0.1)
a_1, a_2 = sf.parameters('a_1, a_2')
globalmodel = sf.Model({
    y_1: a_1 * np.e**(- kg * x_1),
    y_2: a_2 * np.e**(- kg * x_2),
})

# Do fit
globalfit = sf.Fit(globalmodel, x_1=t, x_2=t, y_1=C1, y_2=C2)
globalfit_result = globalfit.execute()
print(globalfit_result)

### EDITED START
while globalfit_result.r_squared < 0.99:
    kg = sf.Parameter(value=globalfit_result.params['kg'])
    a_1 = sf.Parameter(value=globalfit_result.params['a_1'])
    a_2 = sf.Parameter(value=globalfit_result.params['a_2'])
    globalmodel = sf.Model({
        y_1: a_1 * np.e**(- kg * x_1),
        y_2: a_2 * np.e**(- kg * x_2),
    })
    globalfit = sf.Fit(globalmodel, x_1=t, x_2=t, y_1=C1, y_2=C2)
    globalfit_result = globalfit.execute()
### EDITED END

y_r = globalmodel(x_1=t, x_2=t, **globalfit_result.params)

# Plot fit
plt.plot(t,C1,'ro')
plt.plot(t,C2,'b+')
plt.plot(t,y_r[0],'r-')
plt.plot(t,y_r[1],'b-')
plt.show()

In this example, I expect the "kg" parameter in the "globalmodel" is optimized to 0.005. However, the value of "kg" is about 9.6e-3, which is too near to the initial value (10.0e-3). I think I do something stupid, but I cannot figure it out.

Any comments and suggestions are welcome!

EDITED

I added (a very ugly) while loop to get the best fit. I am not sure why it should be, but it seems to work.

Simd
  • 19,447
  • 42
  • 136
  • 271
heartfield
  • 93
  • 1
  • 7

1 Answers1

1

It would appear that the bounds are causing the problem. I removed them in my test and then everything works fine. This is a known problem in symfit 0.3.3, a̶n̶d̶ ̶o̶n̶e̶ ̶I̶ ̶a̶l̶r̶e̶a̶d̶y̶ ̶f̶i̶x̶e̶d̶ ̶i̶n̶ ̶t̶h̶e̶ ̶[̶̶m̶a̶s̶t̶e̶r̶̶]̶[̶1̶]̶ ̶b̶r̶a̶n̶c̶h̶ ̶o̶n̶ ̶G̶i̶t̶h̶u̶b̶.̶ ̶ ̶ ̶I̶ ̶u̶p̶l̶o̶a̶d̶e̶d̶ ̶a̶ ̶n̶e̶w̶ ̶d̶e̶v̶ ̶v̶e̶r̶s̶i̶o̶n̶ ̶y̶o̶u̶ ̶c̶o̶u̶l̶d̶ ̶n̶o̶w̶ ̶i̶n̶s̶t̶a̶l̶l̶ ̶u̶s̶i̶n̶g̶ ̶̶p̶i̶p̶ ̶i̶n̶s̶t̶a̶l̶l̶ ̶s̶y̶m̶f̶i̶t̶=̶=̶0̶.̶3̶.̶3̶.̶d̶e̶v̶1̶5̶5̶ ̶-̶-̶u̶p̶g̶r̶a̶d̶e̶̶,̶ ̶u̶n̶t̶i̶l̶ ̶I̶ ̶o̶f̶f̶i̶c̶i̶a̶l̶l̶y̶ ̶r̶e̶l̶e̶a̶s̶e̶ ̶0̶.̶3̶.̶4̶ ̶(̶w̶h̶i̶c̶h̶ ̶w̶i̶l̶l̶ ̶b̶e̶ ̶i̶d̶e̶n̶t̶i̶c̶a̶l̶ ̶b̶u̶t̶ ̶w̶i̶t̶h̶ ̶e̶x̶t̶e̶n̶d̶e̶d̶ ̶d̶o̶c̶u̶m̶e̶n̶t̶a̶t̶i̶o̶n̶)̶, which has now been fixed in newer versions.

Please note, I changed your np.e to sf.exp because that is symbolic. My working code is below, identical to yours except for the change mentioned and running in 0.3.3.dev155.

import numpy as np
import symfit as sf
import matplotlib.pyplot as plt

# Generate example data
t = np.arange(0.0, 600.1, 30)
k = 0.005
C1_0, C2_0 = 1.0, 2.0
C1 = C1_0 * np.exp(-k*t)
C2 = C2_0 * np.exp(-k*t)

# Construct model
x_1, x_2, y_1, y_2 = sf.variables('x_1, x_2, y_1, y_2')
kg = sf.Parameter(value=0.01, min=0.0, max=0.1)
a_1, a_2 = sf.parameters('a_1, a_2')
globalmodel = sf.Model({
    y_1: a_1 * sf.exp(- kg * x_1),
    y_2: a_2 * sf.exp(- kg * x_2),
})

# Do fit
globalfit = sf.Fit(globalmodel, x_1=t, x_2=t, y_1=C1, y_2=C2)
globalfit_result = globalfit.execute()
print(globalfit_result)

y_r = globalmodel(x_1=t, x_2=t, **globalfit_result.params)

# Plot fit
plt.plot(t,C1,'ro')
plt.plot(t,C2,'b+')
plt.plot(t,y_r[0],'r-')
plt.plot(t,y_r[1],'b-')
plt.show()
tBuLi
  • 2,295
  • 2
  • 16
  • 16
  • Thank you for your prompt reply with 0.3.3.dev155. Everything works fine except for the error message below. C:\Users\User\Miniconda2\lib\site-packages\scipy\optimize\slsqp.py:341: RuntimeWarning: invalid value encountered in greater bnderr = where(bnds[:, 0] > bnds[:, 1])[0] C:\Users\User\Miniconda2\lib\site-packages\symfit\core\fit.py:1610: FutureWarning: comparison to `None` will result in an elementwise object comparison in the future. if None in self.sigma_data.values(): – heartfield Dec 05 '16 at 02:37
  • If I understand correctly, that's a warning right? So you get the right result? I'll be sure to have the second one out in 0.3.4 ;). The warning with regards to bounds is deeper and comes from the minimization algorithm, do you still get it if e.g. you change min to something small but nonzero? – tBuLi Dec 05 '16 at 12:52
  • Yes. I got the right result! Both of them are just warnings. The second warning remains even if I changed the min of "kg" to 0.001. – heartfield Dec 06 '16 at 02:57
  • Got rid of it, and the new version is now released including improved docs ;) – tBuLi Dec 06 '16 at 16:12
  • 1
    p.s. if my answer fixed your problem, would you mind accepting it as the answer? :) – tBuLi Dec 13 '16 at 21:29
  • Sorry for my late response... Thanks anyway. – heartfield Mar 09 '17 at 02:56