Even in C (not just C++) you can declare variables at the start of a code block, which is enclosed in curly braces.
Example:
#include <stdio.h>
void use_stack(int cnt)
{
if (cnt<=16) {
int a[16];
int i;
a[0]=3;
a[1]=5;
for (i=2;i<cnt;i++) {
a[i]=a[i-1]+a[i-2];
}
printf("a[%d] == %d\n",cnt-1,a[cnt-1]);
}
else {
printf("cnt is too big\n");
}
}
Now I know that variables like the array a[16]
are allocated on the stack in this case.
I was wondering if the space for this array is allocated at the start of the function (first opening curly brace) or at the start of the block where it is declared (opening curly brace after if
).
From examining the assembler code it seems the compiler allocates the space for a[16]
directly at the entry of the function.
I actually expected that the stack would be allocated (stack pointer decreased) at the declaration of a[16]
and that the stack would be de-allocated (stack pointer increased) at the end of the corresponding if
code block.
But this does not happen it seems (stack for a[16]
is allocated directly at function entry, even if a[16]
is not used in the else
branch).
Has anyone an explanation why this is the case ?
So is there any part of the C language standard, which explains this behavior, or does it have to do with things like "longjmp" or signal handling, which maybe require that the stack pointer is "constant" inside a function ?
Note: The reason why I assumed the stack would be allocated/deallocated at the start/end of the code block is, because in C++ the constructor/destructor of objects allocated on the stack will be called at the start/end of the code block. So if you examine the assembler code of a C++ program you will notice that the stack is still allocated at the function entry; just the constructor/destructor call will be done at the start/end of the code block.
I am explicitly interested why stack is not allocated/deallocated at the start/end of a code block using curly braces.
The question: At what exact moment is a local variable allocated storage? is only about a local variable allocated at the start of a function. I am surprised that stack allocation for variables allocated later inside a code block is also done at the function entry.
So far the answers have been:
- Something to do with optimization
- Might different for C, C++
- Stack is not even mentioned in the C language specification
So: I am interested in the answer for C... (and I strongly believe that the answer will apply to C++ also, but I am not asking about C++ :-)).
Optimization: Here is an example which will directly demonstrate why I am so surprised and why I am quite sure that this is not an optimization:
#include <stdio.h>
static char *stackA;
static char *stackB;
static void calc(int c,int *array)
{
int result;
if (c<=0) {
// base case c<=0:
stackB=(char *)(&result);
printf("stack ptr calc() = %p\n",stackB);
if (array==NULL) {
printf("a[0] == 1\n");
} else {
array[0]=1;
}
return;
}
// here: c>0
if (array==NULL) {
// no array allocated, so allocate it now
int i;
int a[2500];
// calculate array entries recursively
calc(c-1,a);
// calculate current array entry a[c]
a[c]=a[c-1]+3;
// print full array
for(i=0;i<=c;i++) {
printf("a[%d] = %d\n",i,a[i]);
}
} else {
// array already allocated
calc(c-1,array);
// calculate current array entry a[c]
array[c]=array[c-1]+3;
}
}
int main()
{
int a;
stackA=(char *)(&a);
printf("stack ptr main() = %p\n",stackA);
calc(9,NULL);
printf("used stack = %d\n",(int)(stackA-stackB));
}
I am aware that this is an ugly program :-).
The function calc
calculates n*3 + 1
for all 0<=n<=c
in a recursive fashion.
If you look at the code for calc
you notice that the array a[2500]
is only declared when the input parameter array
to the function is NULL
.
Now this only happens in the call to calc
which is done in main
.
The stackA
and stackB
pointers are used to calculate a rough estimate how much stack is used by this program.
Now: int a[2500]
should consume around 10000 bytes (4 bytes per integer, 2500 entries). So you could expect that the whole program consumes around 10000 bytes of stack + something additional (for overhead when calc
is called recursively).
But: It turns out this program consumes around 100000 bytes of stack (10 times as much as expected). The reason is, that for each call of calc
the array a[2500]
is allocated, even if it is only used in the first call. There are 10 calls to calc
(0<=c<=9
) and so you consume 100000 bytes of stack.
- It does not matter if you compile the program with or without optimization
- GCC-4.8.4 and clang for x64, MS Visual C++ 2010, Windriver for DIAB (for PowerPC) all exhibit this behavior
Even weirder: C99 introduces Variable Length Arrays. If I replace int a[2500];
in the above code with int a[2500+c];
then the program uses less stack space (around 90000 bytes less).
Note: If I only change the call to calc
in main
to calc(1000,NULL);
the program will crash (stack overflow == segmentation fault). If I additionally change to int a[2500+c];
the program works and uses less than 100KB stack. I still would like to see an answer, which explains why a Variable Length Array does not lead to a stack overflow whereas a fixed length array does lead to a stack overflow, in particular since this fixed length array is out of scope (except for the first invocation of calc
).
So what's the reason for this behavior in C ?
I do not believe that GCC/clang both simply are not able to do better; I strongly believe there has to be a technical reason for this. Any ideas ?
Answer by Google
After more googling: I strongly believe this has something to do with "setjmp/longjmp" behavior. Google for "Variable Length Array longjmp" and see for yourself. It seems longjmp is hard to implement if you do not allocate all arrays at function entry.