i have got the following problem and no idea.
My (head of) data looks like this:
tag.1 tag.2 tag.3 tag.4 tag.5 tag.6 tag.7 tag.8 tag.9 tag.10 Sex
it contains only 1 and 0.
My aime is to create a new table. I want to sum up for both m(=0) and f(=1), if there is an 1 in the column of day. So I would have an concrete number of females and males for each day.
Would be nice if you could help me with that.
data? i dont know how to insert my matrix here output? new table with the sum of males/females per each samplingday
tag 1 tag 2 tag 3 tag 4 tag 5 tag 6 tag 7 tag 8 tag 9 tag 10 Sex
1 1 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 1 0 0 0 1
5 1 0 0 0 0 0 0 0 0 0 1
6 1 0 0 0 0 0 0 0 0 0 1
7 1 0 0 0 0 0 0 0 0 0 1
8 1 1 0 0 0 0 0 0 0 0 0
9 1 0 0 0 0 0 0 0 0 0 0
10 1 0 0 0 0 0 0 0 0 0 0
11 1 0 0 0 0 0 0 0 0 0 1
12 1 1 0 0 0 0 0 0 0 0 0
13 1 0 0 0 0 0 0 0 0 0 0
14 1 1 0 0 0 0 0 0 0 0 0
15 1 0 0 0 0 0 0 0 0 0 0
16 1 0 0 0 0 0 0 0 0 0 0
17 1 0 0 1 0 0 0 0 0 0 0
18 1 0 0 0 0 0 0 0 0 0 0
19 1 0 1 0 0 0 0 0 0 0 0
20 1 1 0 0 1 0 1 1 0 0 0
21 1 0 0 0 0 0 0 0 0 0 0
22 1 1 0 0 0 0 0 0 0 0 1
23 1 0 0 0 0 0 0 0 0 0 0
24 0 1 0 0 0 0 0 0 0 0 1
25 0 1 0 0 0 0 0 0 0 0 1
26 0 1 0 0 0 0 0 0 0 0 0
27 0 1 0 0 1 0 0 0 0 0 0
28 0 1 0 0 0 1 0 0 0 0 0
29 0 1 0 0 0 0 0 0 0 0 0
30 0 1 0 0 0 0 0 0 0 0 0
31 0 1 0 1 0 0 0 0 0 0 0
32 0 1 0 0 0 0 0 0 0 0 0
33 0 1 0 0 0 0 0 0 0 0 0
34 0 1 0 0 0 0 0 0 0 0 0
35 0 1 0 0 0 0 0 0 0 0 1
36 0 1 0 0 0 0 0 0 0 0 0
37 0 1 0 0 0 0 0 0 0 0 0
38 0 1 1 0 0 0 0 0 0 0 1
39 0 1 1 1 1 1 0 0 0 0 0
40 0 1 0 0 0 0 0 0 0 0 0
41 0 1 0 0 0 0 0 0 0 0 1
42 0 1 0 0 0 0 0 0 0 1 0
43 0 1 0 0 0 0 0 0 0 0 0
44 0 1 0 0 0 0 0 0 0 0 1
45 0 1 0 0 0 0 0 0 0 0 0
46 0 1 0 0 0 0 0 0 0 0 0
47 0 1 0 0 0 0 0 0 0 0 1
48 0 1 1 1 1 0 0 0 0 0 1
49 0 0 1 1 1 0 0 0 0 0 0
50 0 0 1 0 0 0 0 0 0 0 0
51 0 0 1 1 0 0 0 0 0 0 0
52 0 0 1 0 0 0 0 0 0 0 1
53 0 0 1 1 1 0 1 0 0 0 0
54 0 0 1 0 1 0 1 0 0 0 1
55 0 0 1 0 0 1 0 1 0 0 0
56 0 0 1 0 0 0 0 0 0 0 1
57 0 0 1 0 0 0 0 1 0 0 1
58 0 0 1 0 0 0 0 0 0 0 0
59 0 0 1 0 0 0 0 0 0 0 0
60 0 0 1 0 1 0 0 0 0 0 1
61 0 0 0 1 0 0 0 0 0 0 0
62 0 0 0 1 0 0 0 0 0 0 0
63 0 0 0 1 0 0 0 0 0 0 1
64 0 0 0 1 0 1 0 0 0 0 0
65 0 0 0 1 0 0 0 0 0 0 1
66 0 0 0 1 0 0 0 0 0 0 0
67 0 0 0 1 0 0 0 0 0 0 1
68 0 0 0 1 0 0 1 0 0 0 1
69 0 0 0 1 0 0 0 0 0 0 0
70 0 0 0 1 0 0 0 0 0 0 1
71 0 0 0 1 0 0 0 0 0 0 1
72 0 0 0 1 0 0 0 0 0 0 0
73 0 0 0 0 1 1 1 0 0 0 1
74 0 0 0 0 1 0 0 0 1 0 1
75 0 0 0 0 1 0 0 0 0 0 1
76 0 0 0 0 1 1 0 0 0 0 1
77 0 0 0 0 1 0 0 0 0 0 1
78 0 0 0 0 1 0 0 0 0 0 0
79 0 0 0 0 1 1 1 1 0 0 0
80 0 0 0 0 1 0 0 0 0 0 0
81 0 0 0 0 1 0 0 0 0 0 0
82 0 0 0 0 1 0 0 0 0 0 0
83 0 0 0 0 1 1 0 0 0 0 0
84 0 0 0 0 1 0 0 0 0 0 0
85 0 0 0 0 1 0 0 0 1 1 1
86 0 0 0 0 1 1 1 0 0 0 1
87 0 0 0 0 1 0 0 0 0 0 0
88 0 0 0 0 1 0 1 0 0 0 0
89 0 0 0 0 1 0 1 0 0 0 1
90 0 0 0 0 1 0 0 0 0 0 0