I'm beginner of tensorflow. I made simple autoencoder with the help. I want to convert final decoded
tensor to numpy array.I tried using .eval()
but I could not work it. how can I convert tensor to numpy?
My input image size is 512*512*1 and data type is raw image format.
code
#input
image_size = 512
hidden = 256
input_image = np.fromfile('PATH',np.float32)
# Variables
x_placeholder = tf.placeholder("float", (image_size*image_size))
x = tf.reshape(x_placeholder, [image_size * image_size, 1])
w_enc = tf.Variable(tf.random_normal([hidden, image_size * image_size], mean=0.0, stddev=0.05))
w_dec = tf.Variable(tf.random_normal([image_size * image_size, hidden], mean=0.0, stddev=0.05))
b_enc = tf.Variable(tf.zeros([hidden, 1]))
b_dec = tf.Variable(tf.zeros([image_size * image_size, 1]))
#model
encoded = tf.sigmoid(tf.matmul(w_enc, x) + b_enc)
decoded = tf.sigmoid(tf.matmul(w_dec,encoded) + b_dec)
# Cost Function
cross_entropy = -1. * x * tf.log(decoded) - (1. - x) * tf.log(1. - decoded)
loss = tf.reduce_mean(cross_entropy)
train_step = tf.train.AdagradOptimizer(0.1).minimize(loss)
# Train
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print('Training...')
for _ in xrange(10):
loss_val, _ = sess.run([loss, train_step], feed_dict = {x_placeholder: input_image})
print loss_val