One object-oriented approach and make your function a class, aka as a "functor", whose instances automatically keep track of whether they've been run or not when each instance is created.
Since your updated question indicates you may need many of them, I've updated my answer to deal with that by using a class factory pattern. This is a bit unusual, and it may have been down-voted for that reason (although we'll never know for sure because they never left a comment). It could also be done with a metaclass, but it's not much simpler.
def RunOnceFactory():
class RunOnceBase(object): # abstract base class
_shared_state = {} # shared state of all instances (borg pattern)
has_run = False
def __init__(self, *args, **kwargs):
self.__dict__ = self._shared_state
if not self.has_run:
self.stuff_done_once(*args, **kwargs)
self.has_run = True
return RunOnceBase
if __name__ == '__main__':
class MyFunction1(RunOnceFactory()):
def stuff_done_once(self, *args, **kwargs):
print("MyFunction1.stuff_done_once() called")
class MyFunction2(RunOnceFactory()):
def stuff_done_once(self, *args, **kwargs):
print("MyFunction2.stuff_done_once() called")
for _ in range(10):
MyFunction1() # will only call its stuff_done_once() method once
MyFunction2() # ditto
Output:
MyFunction1.stuff_done_once() called
MyFunction2.stuff_done_once() called
Note: You could make a function/class able to do stuff again by adding a reset()
method to its subclass that reset the shared has_run
attribute. It's also possible to pass regular and keyword arguments to the stuff_done_once()
method when the functor is created and the method is called, if desired.
And, yes, it would be applicable given the information you added to your question.