I am working in a CUDA project but I am having some serious trouble for which I can't find a solution.
I implemented the project and in my PC (pA) using a NVIDIA Quadro K2000m, it works. But when I deploy the project on a cluster which has a Nvidia Tesla GPU, and in another PC (pB) (NVIDIA gtx 960m) it won't execute!
The interesting thing is that when I use the Nsight Debugger in Visual Studio on pB (second PC), it will execute and not show the error: Unspecified launch failure
this is the code of the First Kernel:
__global__ void calcKernel(float *dev_calcMatrix,
int *documentarray,
int *documentTermArray,
int *distincttermsarray,
int *distinctclassarray,
int *startingPointOfClassDoc,
int *endingPOintOfClassDoc,
int sizeOfDistinctClassarray,
int sizeOfTerms)
{
int index = blockIdx.x * blockDim.x + threadIdx.x;
int term = distincttermsarray[index];
if (index <= sizeOfTerms) {
for (int i = 0; i < sizeOfDistinctClassarray; i++)
{
int save = (index * sizeOfDistinctClassarray) + i;
bool test = false;
for (int j = startingPointOfClassDoc[i]; j <= endingPOintOfClassDoc[i]; j++)
{
if (term == documentarray[j])
{
printf("%i \t", index);
dev_calcMatrix[save] = dev_calcMatrix[save] + documentTermArray[j];
//printf("TermArray: documentTermArray[j] %d\n", dev_calcMatrix[save], documentTermArray[j]);
test = true;
}
}
if (!test) dev_calcMatrix[save] = 0;
}
}
}
This is the code I am using to create the Threads and blocks:
float blockNotFinal = data.sizeOfDistinctTerms / 1024;
int threads = 0;
int blocks = (int)floor(blockNotFinal);
dim3 dimGrid((blocks + 1), 1, 1);
if (data.sizeOfDistinctTerms < 1024)
{
threads = data.sizeOfDistinctTerms;
}
else
{
threads = 1024;
}
dim3 dimBlock(threads, 1, 1);
So, I need to create 23,652 threads. What I am doing is 23,652 / 1024 = 23.09. After I get the 23.09 value, I round it to 23 and add + 1 = 24 blocks. So I am creating 24 blocks * 1024 threads: 24,576 threads.
I know that some threads will be created even though they wont be used, and that's why I added this if statement in the beggining of the Kernel:
int index = blockIdx.x * blockDim.x + threadIdx.x;
if (index <= sizeOfTerms (23,652 is the size)) { .... }
The problem is that I added some PRINTF() before the IF statement and after the IF statement.
Before the IF statement the maximum Index of Thread before it crashed was: 24479 Inside the IF statement the maximum Index of Threads before it crashed was: 23487.
So, from the information above, the number of threads is not going up to the maximum. Also, on the cluster it gives me another error: Illegal memory access encountered. I know that this error means that it can be that it has an Index out of bound, but I am giving the equal size of the arrays with the number of the threads.
Here is the code where I allocate the memory in the GPU:
cudaStatus = cudaSetDevice(0);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaSetDevice failed! Do you have a CUDA-capable GPU installed?");
goto Error;
}
cout << "\n Allocated GPU buffers";
// Allocate GPU buffers for input and output vectors
cudaStatus = cudaMalloc((void**)&dev_calcMatrix, data.sizeOfDistinctTerms * data.sizeOfDistinctClassarray * sizeof(float));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&dev_probMatrix, data.sizeOfDistinctTerms * data.sizeOfDistinctClassarray * sizeof(float));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&classSummationTerms, data.sizeOfDistinctClassarray * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&documentarray, data.sizeOfTotalTermsDocsFreq * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&documentTermArray, data.sizeOfTotalTermsDocsFreq * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&distincttermsarray, data.sizeOfDistinctTerms * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&distinctclassarray, data.sizeOfDistinctClassarray * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&startingPointOfClassDoc, data.sizeOfDistinctClassarray * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&endingPOintOfClassDoc, data.sizeOfDistinctClassarray * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cout << "\n Copied input vectors from host to GPU";
// Copy input vectors from host memory to GPU buffers.
cudaStatus = cudaMemcpy(documentarray, data.documentarray, data.sizeOfTotalTermsDocsFreq * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
cudaStatus = cudaMemcpy(documentTermArray, data.documentTermArray, data.sizeOfTotalTermsDocsFreq * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
cudaStatus = cudaMemcpy(distincttermsarray, data.distincttermsarray, data.sizeOfDistinctTerms * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
cudaStatus = cudaMemcpy(classSummationTerms, data.classSummationTerms, data.sizeOfDistinctClassarray * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
cudaStatus = cudaMemcpy(distinctclassarray, data.distinctclassarray, data.sizeOfDistinctClassarray * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
cudaStatus = cudaMemcpy(startingPointOfClassDoc, data.startingPointOfClassDoc, data.sizeOfDistinctClassarray * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
cudaStatus = cudaMemcpy(endingPOintOfClassDoc, data.endingPOintOfClassDoc, data.sizeOfDistinctClassarray * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
cout << "\n Now we call the CALCKERNL()";
// Launch a kernel on the GPU with one thread for each element.
calcKernel <<<dimGrid, dimBlock >>>(dev_calcMatrix,
documentarray,
documentTermArray,
distincttermsarray,
distinctclassarray,
startingPointOfClassDoc,
endingPOintOfClassDoc,
sizi,
sizeOfTerms);
//// cudaDeviceSynchronize waits for the kernel to finish, and returns
//// any errors encountered during the launch.
//cudaStatus = cudaDeviceSynchronize();
//if (cudaStatus != cudaSuccess) {
// fprintf(stderr, "cudaDeviceSynchronize returned error code %d after launching addKernel!\n", cudaStatus);
// goto Error;
//}
cudaStatus = cudaStreamSynchronize(0);
if (cudaStatus != cudaSuccess) {
//fprintf(stderr, "calcKernel launch failed: %s\n", cudaGetErrorString(cudaStatus));
cout << "\n Synchronization failed: " << cudaGetErrorString(cudaStatus);
goto Error;
}
// Check for any errors launching the kernel
cudaStatus = cudaGetLastError();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "calcKernel launch failed: %s\n", cudaGetErrorString(cudaStatus));
goto Error;
}
Any idea why this is happening?