I would like to divide all documents in 10 topics, and it goes well with a converged result except for the dimensions of distributions and covariance matrix of topic.
Why the topics distribution is a 9 dimension vector instead of 10 and their covariance matrix is 9*9 matrix instead of 10*10?
I have use library(topicmodels)
and function CTM()
to implement the topic model in Chinese.
my code is below:
library(rJava);
library(Rwordseg);
library(NLP);
library(tm);
library(tmcn)
library(tm)
library(Rwordseg)
library(topicmodels)
installDict("C:\\Users\\Jeffy\\OneDrive\\Workplace\\R\\Law.scel","Law");
installDict("C:\\Users\\Jeffy\\OneDrive\\Workplace\\R\\NationalInstitution.scel","NationalInstitution");
installDict("C:\\Users\\Jeffy\\OneDrive\\Workplace\\R\\Place.scel","Place");
installDict("C:\\Users\\Jeffy\\OneDrive\\Workplace\\R\\Psychology.scel","Psychology");
installDict("C:\\Users\\Jeffy\\OneDrive\\Workplace\\R\\Politics.scel","Politics");
listDict();
#read file
d.vec <- segmentCN("samgovWithoutID.csv", returnType = "tm")
samgov.segment <- read.table("samgovWithoutID.segment.csv", header = TRUE, fill = TRUE, stringsAsFactors = F, sep = ",",fileEncoding='utf-8')
fix(samgov.segment)
# create DTM(document term matrix)
d.corpus <- Corpus(VectorSource(samgov.segment$content))
inspect(d.corpus[1:10])
d.corpus <- tm_map(d.corpus, removeWords, stopwordsCN())
ctrl <- list(removePunctuation = TRUE, removeNumbers= TRUE, wordLengths = c(1, Inf), stopwords = stopwordsCN(), wordLengths = c(2, Inf))
d.dtm <- DocumentTermMatrix(d.corpus, control = ctrl)
inspect(d.dtm[1:10, 110:112])
# impletment topic models
ctm10<-CTM(d.dtm,k=10, control=list(seed=2014012692))
Terms10 <- terms(ctm10, 10)
Terms10[,1:10]
ctm20<-CTM(d.dtm,k=20, control=list(seed=2014012692))
Terms20 <- terms(ctm20, 20)
Terms20[,1:20]
The result in R Studio (see Highlighted part):
Help document: