I need to use an UDF in Spark that takes in a timestamp, an Integer and another dataframe and returns a tuple of 3 values.
I keep hitting error after error and I'm not sure I'm trying to fix it right anymore.
Here is the function:
def determine_price (view_date: org.apache.spark.sql.types.TimestampType , product_id: Int, price_df: org.apache.spark.sql.DataFrame) : (Double, java.sql.Timestamp, Double) = {
var price_df_filtered = price_df.filter($"mkt_product_id" === product_id && $"created"<= view_date)
var price_df_joined = price_df_filtered.groupBy("mkt_product_id").agg("view_price" -> "min", "created" -> "max").withColumn("last_view_price_change", lit(1))
var price_df_final = price_df_joined.join(price_df_filtered, price_df_joined("max(created)") === price_df_filtered("created")).filter($"last_view_price_change" === 1)
var result = (price_df_final.select("view_price").head().getDouble(0), price_df_final.select("created").head().getTimestamp(0), price_df_final.select("min(view_price)").head().getDouble(0))
return result
}
val det_price_udf = udf(determine_price)
the error it gives me is:
error: missing argument list for method determine_price
Unapplied methods are only converted to functions when a function type is expected.
You can make this conversion explicit by writing `determine_price _` or `determine_price(_,_,_)` instead of `determine_price`.
If I start adding the arguments I keep running in other errors such as Int expected Int.type found or object DataFrame is not a member of package org.apache.spark.sql
To give some context:
The idea is that I have a dataframe of prices, a product id and a date of creation and another dataframe containing product IDs and view dates.
I need to determine the price based on which was the last created price entry that is older than the view date.
Since each product ID has multiple view dates in the second dataframe. I thought an UDF is faster than a cross join. If anyone has a different idea, I'd be grateful.