2

Im trying to make a 3D renderer with OpenGL using c++, well, so far I have a Scene class that contains a list of Objects and Materials objects (I also have classes for those and I written my code so an object can have multiple shaders (every shader will be able to affect a group of vertices in an object) but now I'm trying to find a good way to send all that information to openGL.

I've seen people suggest taking everything that uses the same shader and rendering that at once, and do the same for every shader, well If I understood well enough,but is that a good idea if you can get the same shaders included in different objects, if I merged every vert that has shader A for example, won't it hurt that that group contains verts of separate objects when I try to draw them at once ? And if I take each object and separate each object according to their shaders, so for the rendering I would take Object A then split into its shader groups, then draw shadergroup1 in object1 then shader group2 in object 2 and so on.. Won't that be too many draw calls too.

What strategy do you recommend to accomplish that ?

Community
  • 1
  • 1

2 Answers2

4

The first things I recommend is, that you stop thinking in terms of "objects", as far as the rendering process is concerned. When rendering the only sensible grouping are drawing batches (of a certain primitive, points, lines, triangles) for which the same rendering steps (render pipeline) is executed. The modern rendering APIs that were released over the past months (Vulkan, DirectX 12 and Metal) make this explicit.

When rendering your scene the recommended strategy is to iterate over all your objects, split them into render pipeline groups and perform a single drawing batch call once for each primitive-by-pipeline group. The overall goal should be to minimize the total number of drawing calls made.

datenwolf
  • 159,371
  • 13
  • 185
  • 298
0

If you are using OpenGL 3.3, you are using Vertex Array Objects (VAO) and Vertex Buffer Objects (VBO). You have an object, a table for example, which can have three (or more or less) VBO:s, one for vertex data, one for normal data and one for texture coordinate data. You enclose your VBO:s of that table inside one VAO. So every object have its own VAO stored in a GPU memory.

When you want to render your objects or a part of them, you bind one of your shaders at use and call those VAO:s you want to render by that shader. It may be important that you render right objects on right order and use right shaders (of course!) on each VAO.

mamannon
  • 142
  • 1
  • 9
  • You could add, that it is important to have the same attributes (or at least the same attribute locations) in all shaders. – BDL Dec 20 '16 at 21:47