Assuming you want to minimize the overall discrepancies between elements of A
and matched elements in B
, the problem can be written as an assignment problem of assigning to every row (element of A
) a column (element of B
) given a cost matrix C
. The Hungarian (or Munkres') algorithm solves the assignment problem.
I assume that you want to minimize cumulative squared distance between A
and matched elements in B
, and use the function [assignment,cost] = munkres(costMat)
by Yi Cao from https://www.mathworks.com/matlabcentral/fileexchange/20652-hungarian-algorithm-for-linear-assignment-problems--v2-3-:
A = [1 5 7];
B = [1 2 3 6 9 10];
[Bprime,matches] = matching(A,B)
function [Bprime,matches] = matching(A,B)
C = (repmat(A',1,length(B)) - repmat(B,length(A),1)).^2;
[matches,~] = munkres(C);
Bprime = B(matches);
end
Assuming instead you want to find matches recursively, as suggested by your question, you could either walk through A
, for each element in A
find the closest remaining element in B
and discard it (sortedmatching
below); or you could iteratively form and discard the distance-minimizing match between remaining elements in A
and B
until all elements in A
are matched (greedymatching
):
A = [1 5 7];
B = [1 2 3 6 9 10];
[~,~,Bprime,matches] = sortedmatching(A,B,[],[])
[~,~,Bprime,matches] = greedymatching(A,B,[],[])
function [A,B,Bprime,matches] = sortedmatching(A,B,Bprime,matches)
[~,ix] = min((A(1) - B).^2);
matches = [matches ix];
Bprime = [Bprime B(ix)];
A = A(2:end);
B(ix) = Inf;
if(not(isempty(A)))
[A,B,Bprime,matches] = sortedmatching(A,B,Bprime,matches);
end
end
function [A,B,Bprime,matches] = greedymatching(A,B,Bprime,matches)
C = (repmat(A',1,length(B)) - repmat(B,length(A),1)).^2;
[minrows,ixrows] = min(C);
[~,ixcol] = min(minrows);
ixrow = ixrows(ixcol);
matches(ixrow) = ixcol;
Bprime(ixrow) = B(ixcol);
A(ixrow) = -Inf;
B(ixcol) = Inf;
if(max(A) > -Inf)
[A,B,Bprime,matches] = greedymatching(A,B,Bprime,matches);
end
end
While producing the same results in your example, all three methods potentially give different answers on the same data.