Loic's answer looks good to me, but I needed to initialize the parent so that each element had itself as parent, so I used the iota
function to generate an increasing sequence starting from 0.
Using Boost, and I imported bits/stdc++.h
and used using namespace std
for simplicity.
#include <bits/stdc++.h>
#include <boost/pending/disjoint_sets.hpp>
#include <boost/unordered/unordered_set.hpp>
using namespace std;
int main() {
array<int, 100> rank;
array<int, 100> parent;
iota(parent.begin(), parent.end(), 0);
boost::disjoint_sets<int*, int*> ds(rank.begin(), parent.begin());
ds.union_set(1, 2);
ds.union_set(1, 3);
ds.union_set(1, 4);
cout << ds.find_set(1) << endl; // 1 or 2 or 3 or 4
cout << ds.find_set(2) << endl; // 1 or 2 or 3 or 4
cout << ds.find_set(3) << endl; // 1 or 2 or 3 or 4
cout << ds.find_set(4) << endl; // 1 or 2 or 3 or 4
cout << ds.find_set(5) << endl; // 5
cout << ds.find_set(6) << endl; // 6
}
I changed std::vector
to std::array
because pushing elements to a vector will make it realloc its data, which makes the references the disjoint sets object contains become invalid.
As far as I know, it's not guaranteed that the parent will be a specific number, so that's why I wrote 1 or 2 or 3 or 4
(it can be any of these). Maybe the documentation explains with more detail which number will be chosen as leader of the set (I haven't studied it).
In my case, the output is:
2
2
2
2
5
6
Seems simple, it can probably be improved to make it more robust (somehow).
Note: std::iota
Fills the range [first, last) with sequentially increasing values, starting with value and repetitively evaluating ++value.
More: https://en.cppreference.com/w/cpp/algorithm/iota