I found this question interesting, because every time I encountered similar topic about the speed of NumPy (compared to C/C++) there was always answers like "it's a thin wrapper, its core is written in C, so it's fast", but this doesn't explain why C should be slower than C with additional layer (even a thin one).
The answer is: your C++ code is not slower than your Python code when properly compiled.
I've done some benchmarks, and at first it seemed that NumPy is surprisingly faster. But I forgot about optimizing the compilation with GCC.
I've computed everything again and also compared results with a pure C version of your code. I am using GCC version 4.9.2, and Python 2.7.9 (compiled from the source with the same GCC). To compile your C++ code I used g++ -O3 main.cpp -o main
, to compile my C code I used gcc -O3 main.c -lm -o main
. In all examples I filled data
variables with some numbers (0.1, 0.4), as it changes results. I also changed np.arrays to use doubles (dtype=np.float64
), because there are doubles in C++ example. My pure C version of your code (it's similar):
#include <math.h>
#include <stdio.h>
#include <time.h>
const int k_max = 100000;
const int N = 10000;
int main(void)
{
clock_t t_start, t_end;
double data1[N], data2[N], coefs1[k_max], coefs2[k_max], seconds;
int z;
for( z = 0; z < N; z++ )
{
data1[z] = 0.1;
data2[z] = 0.4;
}
int i, j;
t_start = clock();
for( i = 0; i < k_max; i++ )
{
for( j = 0; j < N-1; j++ )
{
coefs1[i] += data2[j] * (cos((i+1) * data1[j]) - cos((i+1) * data1[j+1]));
coefs2[i] += data2[j] * (sin((i+1) * data1[j]) - sin((i+1) * data1[j+1]));
}
}
t_end = clock();
seconds = (double)(t_end - t_start) / CLOCKS_PER_SEC;
printf("Time: %f s\n", seconds);
return coefs1[0];
}
For k_max = 100000, N = 10000
results where following:
- Python 70.284362 s
- C++ 69.133199 s
- C 61.638186 s
Python and C++ have basically the same time, but note that there is a Python loop of length k_max, which should be much slower compared to C/C++ one. And it is.
For k_max = 1000000, N = 1000
we have:
- Python 115.42766 s
- C++ 70.781380 s
For k_max = 1000000, N = 100
:
- Python 52.86826 s
- C++ 7.050597 s
So the difference increases with fraction k_max/N
, but python is not faster even for N
much bigger than k_max
, e. g. k_max = 100, N = 100000
:
- Python 0.651587 s
- C++ 0.568518 s
Obviously, the main speed difference between C/C++ and Python is in the for
loop. But I wanted to find out the difference between simple operations on arrays in NumPy and in C. Advantages of using NumPy in your code consists of: 1. multiplying the whole array by a number, 2. calculating sin/cos of the whole array, 3. summing all elements of the array, instead of doing those operations on every single item separately. So I prepared two scripts to compare only these operations.
Python script:
import numpy as np
from time import time
N = 10000
x_len = 100000
def main():
x = np.ones(x_len, dtype=np.float64) * 1.2345
start = time()
for i in xrange(N):
y1 = np.cos(x, dtype=np.float64)
end = time()
print('cos: {} s'.format(end-start))
start = time()
for i in xrange(N):
y2 = x * 7.9463
end = time()
print('multi: {} s'.format(end-start))
start = time()
for i in xrange(N):
res = np.sum(x, dtype=np.float64)
end = time()
print('sum: {} s'.format(end-start))
return y1, y2, res
if __name__ == '__main__':
main()
# results
# cos: 22.7199969292 s
# multi: 0.841291189194 s
# sum: 1.15971088409 s
C script:
#include <math.h>
#include <stdio.h>
#include <time.h>
const int N = 10000;
const int x_len = 100000;
int main()
{
clock_t t_start, t_end;
double x[x_len], y1[x_len], y2[x_len], res, time;
int i, j;
for( i = 0; i < x_len; i++ )
{
x[i] = 1.2345;
}
t_start = clock();
for( j = 0; j < N; j++ )
{
for( i = 0; i < x_len; i++ )
{
y1[i] = cos(x[i]);
}
}
t_end = clock();
time = (double)(t_end - t_start) / CLOCKS_PER_SEC;
printf("cos: %f s\n", time);
t_start = clock();
for( j = 0; j < N; j++ )
{
for( i = 0; i < x_len; i++ )
{
y2[i] = x[i] * 7.9463;
}
}
t_end = clock();
time = (double)(t_end - t_start) / CLOCKS_PER_SEC;
printf("multi: %f s\n", time);
t_start = clock();
for( j = 0; j < N; j++ )
{
res = 0.0;
for( i = 0; i < x_len; i++ )
{
res += x[i];
}
}
t_end = clock();
time = (double)(t_end - t_start) / CLOCKS_PER_SEC;
printf("sum: %f s\n", time);
return y1[0], y2[0], res;
}
// results
// cos: 20.910590 s
// multi: 0.633281 s
// sum: 1.153001 s
Python results:
- cos: 22.7199969292 s
- multi: 0.841291189194 s
- sum: 1.15971088409 s
C results:
- cos: 20.910590 s
- multi: 0.633281 s
- sum: 1.153001 s
As you can see NumPy is incredibly fast, but always a bit slower than pure C.