Here is a detailed account of a problem following my previous post on Swift optionals.
Thanks to leads given here, here and here, I am able to read fractions (for harmonic ratios) or decimals (for cents) from a string array to calculate the frequencies of notes in musical scales.
Each element in the string array is first tested to see if it contains a /
or a .
One of two functions then identifies input errors using optional chaining so both fractional and decimal numbers conform to rules outlined in this tuning file format.
Example 1 and 1a shows what happens with correctly entered data in both formats.
Scale with a mixture of fractions and decimals
C D E F G Ab B C’ let tuning = [ "1/1", "193.15686", "5/4", "503.42157", "696.57843", "25/16", "1082.89214", "2/1"]
the column in the debug area shows input data (top down), row shows output frequencies (l-to-r).
Optional("1/1")
Optional("193.15686")
Optional("5/4")
Optional("503.42157")
Optional("696.57843")
Optional("25/16")
Optional("1082.89214")
Optional("2/1")
[261.62599999999998, 292.50676085897425, 327.03249999999997, 349.91970174951047, 391.22212058238728, 408.79062499999998, 489.02764963627084, 523.25199999999995]
Examples 2 & 3 show how both functions react to bad input (i.e. wrongly entered data).
bad fractions are reported (e.g. missing denominator prints a message)
Optional("1/1") Optional("5/") User input error - invalid fraction: frequency now being set to 0.0 Hertz Optional("500.0") Optional("700.0") Optional("2/1") [261.62599999999998, 0.0, 349.22881168708938, 391.99608729493866, 523.25199999999995]
bad decimals are not reported (e.g. after 700 there is no .0 - this should produce a message)
Optional("1/1") Optional("5/4") Optional("500.0") Optional("700") Optional("2/1") [261.62599999999998, 327.03249999999997, 349.22881168708938, 0.0, 523.25199999999995]
NOTE: In addition to the report 0.0 (Hz) appears in the row when an optional is nil. This was inserted elsewhere in the code (where it is explained in context with a comment.)
The problem in a nutshell ? the function for fractions reports a fault whereas the function for decimal numbers fails to detect bad input.
Both functions use optional chaining with a guard statement. This works for faulty fractions but nothing I do will make the function report a faulty input condition for decimals. After checking the code thoroughly I’m convinced the problem lies in the conditions I’ve set for the guard statement. But I just can’t get this right. Can anyone please explain what I did wrong ?
Tuner.swift
import UIKit
class Tuner {
var tuning = [String]()
let tonic: Double = 261.626 // frequency of middle C
var index = -1
let centsPerOctave: Double = 1200.0 // mandated by Scala tuning file format
let formalOctave: Double = 2.0 // Double for stretched-octave tunings
init(tuning: [String]) {
self.tuning = tuning
let frequency = tuning.flatMap(doubleFromDecimalOrFraction)
print(frequency)
}
func doubleFromDecimalOrFraction(s: String?) -> Double {
index += 1
let whichNumericStringType = s
print(whichNumericStringType as Any) // eavesdrop on String?
var possibleFrequency: Double?
// first process decimal.
if (whichNumericStringType?.contains("."))! {
possibleFrequency = processDecimal(s: s)
}
// then process fractional.
if (whichNumericStringType?.contains("/"))! {
possibleFrequency = processFractional(s: s)
}
// Insert "0.0" marker. Remove when processDecimal works
let noteFrequency = possibleFrequency
let zeroFrequency = 0.0
// when noteFrequency? is nil, possibleFrequency is set to zeroFrequency
let frequency = noteFrequency ?? zeroFrequency
return frequency // TO DO let note: (index: Int, frequency: Double)
}
func processFractional(s: String?) -> Double? {
var fractionArray = s?.components(separatedBy: "/")
guard let numerator = Double((fractionArray?[0])!.digits),
let denominator = Double((fractionArray?[1])!.digits),
numerator > 0,
denominator != 0,
fractionArray?.count == 2
else
{
let possibleFrequency = 0.0
print("User input error - invalid fraction: frequency now being set to \(possibleFrequency) Hertz ")
return possibleFrequency
}
let possibleFrequency = tonic * (numerator / denominator)
return possibleFrequency
}
func processDecimal(s: String?) -> Double? {
let decimalArray = s?.components(separatedBy: ".")
guard let _ = s,
decimalArray?.count == 2
else
{
let denominator = 1
let possibleFrequency = 0.0
print("User input error (value read as \(s!.digits)/\(denominator) - see SCL format, http://www.huygens-fokker.org/scala/scl_format.html): frequency now being forced to \(possibleFrequency) Hertz ")
return possibleFrequency
}
let power = Double(s!)!/centsPerOctave
let possibleFrequency = tonic * (formalOctave**power)
return possibleFrequency
}
}
extension String {
var digits: String {
return components(separatedBy: CharacterSet.decimalDigits.inverted).joined()
}
}
precedencegroup Exponentiative {
associativity: left
higherThan: MultiplicationPrecedence
}
infix operator ** : Exponentiative
func ** (num: Double, power: Double) -> Double{
return pow(num, power)
}
ViewController.swift
import UIKit
class ViewController: UIViewController {
// test pitches: rational fractions and decimal numbers (currently 'good')
let tuning = ["1/1", "5/4", "500.0", "700.0", "2/1"]
// Diatonic scale: rational fractions
// let tuning = [ "1/1", "9/8", "5/4", "4/3", "3/2", "27/16", "15/8", "2/1"]
// Mohajira: rational fractions
// let tuning = [ "21/20", "9/8", "6/5", "49/40", "4/3", "7/5", "3/2", "8/5", "49/30", "9/5", "11/6", "2/1"]
// Diatonic scale: 12-tET
// let tuning = [ "0.0", "200.0", "400.0", "500", "700.0", "900.0", "1100.0", "1200.0"]
// Diatonic scale: mixed 12-tET and rational fractions
// let tuning = [ "0.0", "9/8", "400.0", "4/3", "700.0", "27/16", "1100.0", "2/1"]
// Diatonic scale: 19-tET
// let tuning = [ "0.0", "189.48", "315.8", "505.28", "694.76", "884.24", "1073.72", "1200.0"]
// Diatonic 1/4-comma meantone scale. Pietro Aaron's temperament (1523) : mixed cents and rational fractions
// let tuning = [ "1/1", "193.15686", "5/4", "503.42157", "696.57843", "25/16", "1082.89214", "2/1"]
override func viewDidLoad() {
super.viewDidLoad()
_ = Tuner(tuning: tuning)
}
}