I am trying to get familiar with java multithreaded applications. I tried to think of a simple application that can be parallelized very well. I thought vector addition would be a good application to do so. However, when running on my linux server (which has 4 cores) I dont get any speed up. The time to execute on 4,2,1 threads is about the same.
Here is the code I came up with:
public static void main(String[]args)throws InterruptedException{
final int threads = Integer.parseInt(args[0]);
final int length= Integer.parseInt(args[1]);
final int balk=(length/threads);
Thread[]th = new Thread[threads];
final double[]result =new double[length];
final double[]array1=getRandomArray(length);
final double[]array2=getRandomArray(length);
long startingTime =System.nanoTime();
for(int i=0;i<threads;i++){
final int current=i;
th[i]=new Thread(()->{
for(int k=current*balk;k<(current+1)*balk;k++){
result[k]=array1[k]+array2[k];
}
});
th[i].start();
}
for(int i=0;i<threads;i++){
th[i].join();
}
System.out.println("Time needed: "+(System.nanoTime()-startingTime));
}
length is always a multiple of threads and getRandomArray() creates a random array of doubles between 0 and 1.
Execution Time for 1-Thread: 84579446ns
Execution Time for 2-Thread: 74211325ns
Execution Time for 4-Thread: 89215100ns
length =10000000
Here is the Code for getRandomArray():
private static double[]getRandomArray(int length){
Random random =new Random();
double[]array= new double[length];
for(int i=0;i<length;i++){
array[i]=random.nextDouble();
}
return array;
}
I would appreciate any help.