Somebody have already asked a similar question, but the solution, which is given there, does not work for me.
I am trying to use Adam optimizer in TensorFlow. Here is a part of my code about it:
adamOptimizer = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.9,
beta2=0.999, epsilon=1e-08, use_locking=False, name='Adam')
print('Optimizer was created!')
# Create a variable to track the global step.
global_step = tf.Variable(0, name='global_step', trainable=False)
# Initialize variables
vars_to_init = ae.get_variables_to_init(n)
vars_to_init.append(global_step)
vars_to_init.append
sess.run(tf.variables_initializer(vars_to_init))
# Create an optimizer
train_op = adamOptimizer.minimize(loss, global_step=global_step)
The following error is raised after train_op is used for the first time:
FailedPreconditionError (see above for traceback): Attempting to use uninitialized value pretrain_1/beta2_power [[Node: pretrain_1/beta2_power/read = IdentityT=DT_FLOAT, _class=["loc:@autoencoder_variables/weights1"], _device="/job:localhost/replica:0/task:0/cpu:0"]]
If I try to add a line
vars_to_init.append(beta2_power)
I am getting the following error:
NameError: global name 'beta2_power' is not defined
If I follow an advice for the similar question and replace sess.run(tf.variables_initializer(vars_to_init)) by sess.run(tf.initialize_all_variables()), I am getting the following error after running this line:
FailedPreconditionError: Attempting to use uninitialized value autoencoder_variables/biases1 [[Node: autoencoder_variables/biases1/read = IdentityT=DT_FLOAT, _class=["loc:@autoencoder_variables/biases1"], _device="/job:localhost/replica:0/task:0/cpu:0"]]
I didn't have any problems when I was using Gradient Descent optimizer...
What am I doing wrong? What is the proper way to use this optimizer?
More details about the class to clarify autoencoder_variables:
class AutoEncoder(object):
_weights_str = "weights{0}"
_biases_str = "biases{0}"
def __init__(self, shape, sess):
self.__shape = shape
self.__num_hidden_layers = len(self.__shape) - 2
self.__variables = {}
self.__sess = sess
self._setup_variables()
@property
def shape(self):
return self.__shape
@property
def num_hidden_layers(self):
return self.__num_hidden_layers
@property
def session(self):
return self.__sess
def __getitem__(self, item):
return self.__variables[item]
def __setitem__(self, key, value):
self.__variables[key] = value
def _setup_variables(self):
with tf.name_scope("autoencoder_variables"):
for i in xrange(self.__num_hidden_layers + 1):
# Train weights
name_w = self._weights_str.format(i + 1)
w_shape = (self.__shape[i], self.__shape[i + 1])
a = tf.mul(4.0, tf.sqrt(6.0 / (w_shape[0] + w_shape[1])))
w_init = tf.random_uniform(w_shape, -1 * a, a)
self[name_w] = tf.Variable(w_init,
name=name_w,
trainable=True)
# Train biases
name_b = self._biases_str.format(i + 1)
b_shape = (self.__shape[i + 1],)
b_init = tf.zeros(b_shape)
self[name_b] = tf.Variable(b_init, trainable=True, name=name_b)
if i <= self.__num_hidden_layers:
# Hidden layer fixed weights (after pretraining before fine tuning)
self[name_w + "_fixed"] = tf.Variable(tf.identity(self[name_w]),
name=name_w + "_fixed",
trainable=False)
# Hidden layer fixed biases
self[name_b + "_fixed"] = tf.Variable(tf.identity(self[name_b]),
name=name_b + "_fixed",
trainable=False)
# Pretraining output training biases
name_b_out = self._biases_str.format(i + 1) + "_out"
b_shape = (self.__shape[i],)
b_init = tf.zeros(b_shape)
self[name_b_out] = tf.Variable(b_init,
trainable=True,
name=name_b_out)
def _w(self, n, suffix=""):
return self[self._weights_str.format(n) + suffix]
def _b(self, n, suffix=""):
return self[self._biases_str.format(n) + suffix]
def get_variables_to_init(self, n):
assert n > 0
assert n <= self.__num_hidden_layers + 1
vars_to_init = [self._w(n), self._b(n)]
if n <= self.__num_hidden_layers:
vars_to_init.append(self._b(n, "_out"))
if 1 < n <= self.__num_hidden_layers+1:
# Fixed matrices for learning of deeper layers
vars_to_init.append(self._w(n - 1, "_fixed"))
vars_to_init.append(self._b(n - 1, "_fixed"))
return vars_to_init